【題目】已知實數a滿足1<a≤2,設函數f (x)=x3-
x2+ax.
(Ⅰ) 當a=2時,求f (x)的極小值;
(Ⅱ) 若函數g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點與f (x)的極小值點相同,
求證:g(x)的極大值小于等于10.
【答案】(Ⅰ) 極小值為f (2)=(Ⅱ)證明如下
【解析】
(Ⅰ)解:當a=2時,f′(x)=x2-3x+2=(x-1)(x-2).
列表如下:
x | (- | 1 | (1,2) | 2 | (2,+ |
f′(x) | + | 0 | - | 0 | + |
f(x) | 單調遞增 | 極大值 | 單調遞減 | 極小值 | 單調遞增 |
所以,f (x)的極小值為f (2)=.…………………………………6分
(Ⅱ) 解:f′(x)=x2-(a+1)x+a=(x-1)(x-a).
由于a>1,
所以f (x)的極小值點x=a,則g(x)的極小值點也為x=a.
而g′ (x)=12x2+6bx-6(b+2)=6(x-1)(2x+b+2),
所以,
即b=-2(a+1).
又因為1<a≤2,
所以g(x)極大值=g(1)
=4+3b-6(b+2)
=-3
=6a-2
≤10.
故g(x)的極大值小于等于10.…………………………15分
科目:高中數學 來源: 題型:
【題目】在中國,不僅是購物,而且從共享單車到醫院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現金的人數正在迅速增加。中國人民大學和法國調查公司益普索合作,調查了騰訊服務的6000名用戶,從中隨機抽取了60名,統計他們出門隨身攜帶現金(單位:元)如莖葉圖如示,規定:隨身攜帶的現金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.
(1)根據上述樣本數據,將列聯表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關?
(2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數為,求隨機變量
的期望和方差;
(3)某商場為了推廣手機支付,特推出兩種優惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數學期望的角度分析,選擇哪種優惠方案更劃算?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市在節日期間進行有獎促銷,凡在該超市購物滿元的顧客,將獲得一次摸獎機會,規則如下:一個袋子裝有
只形狀和大小均相同的玻璃球,其中兩只是紅色,三只是綠色,顧客從袋子中一次摸出兩只球,若兩只球都是紅色,則獎勵
元;共兩只球都是綠色,則獎勵
元;若兩只球顏色不同,則不獎勵.
(1)求一名顧客在一次摸獎活動中獲得元的概率;
(2)記為兩名顧客參與該摸獎活動獲得的獎勵總數額,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地舉行水上運動會,如圖,岸邊有兩點,
,小船從
點以
千米/小時的速度沿
方向勻速直線行駛,同一時刻運動員出發,經過
小時與小船相遇.(水流速度忽略不計)
(1)若,
,運動員從
處出發游泳勻速直線追趕,為保證在1小時內(含1小時)能與小船相遇,試求運動員游泳速度的最小值;
(2)若運動員先從處沿射線
方向在岸邊跑步勻速行進
小時后,再游泳勻速直線追趕小船.已知運動員在岸邊跑步的速度為4千米小時,在水中游泳的速度為2千米小時,試求小船在能與運動員相遇的條件下
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓
:
的離心率為
,點
分別為橢圓
與坐標軸的交點,且
.過
軸上定點
的直線與橢圓
交于
,
兩點,點
為線段
的中點.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com