湖南省雅禮中學2009屆高三第六次月考試卷
數 學(文史類)
命題:高三數學組 審卷:高三數學組
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分.滿分150分,考試時間120分鐘.
參考公式: 正棱錐、圓錐的側面積公式
如果事件A、B互斥,那么
P(A+B)=P(A)+P(B)
如果事件A、B相互獨立,那么 其中,c表示底面周長、l表示斜高或
P(A?B)=P(A)?P(B) 母線長
如果事件A在1次實驗中發生的概率是 球的體積公式
P,那么n次獨立重復實驗中恰好發生k
次的概率
其中R表示球的半徑
第I卷(共40分)
一.選擇題:本大題共8小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合要求的.
1.已知全集U={1,2,3,4,5},集合M={1,2,3},N={3,4,5},則M∩(N)=
A.{1,2} B.{4,5} C.{3} D.{1,2,3,4,5}
2.的展開式中含
項的系數是
A.-21
B.21
C.
D.
3.已知a,b∈R,且a>b,則下列不等式中恒成立的是
A.a2>b2 B.>1 。茫甽g(a-b)>0 D.(
)
a <(
)b
4:已知,則
的值為
A. B.
C.1 D.2
5.給出下面四個命題:
①“直線a、b為異面直線”的充分非必要條件是:直線a、b不相交;
②“直線l垂直于平面內所有直線”的充要條件是:l⊥平面
;
③“直線a⊥b”的充分非必要條件是“a垂直于b在平面內的射影”;
④“直線∥平面
”的必要非充分條件是“直線a至少平行于平面
內的一條直線”.
其中正確命題的個數是
。粒1個 B.2個 C.3個 D.4個
為米(如圖所示),旗桿底部與第一
排在一個水平面上.已知國歌長度約為50
秒,升旗手勻速升旗的速度為
A.(米/秒) B.
(米/秒) C.
(米/秒) D.
(米/秒)
7.已知P是橢圓上的一點,
是該橢圓的兩個焦點,若
的內切圓半徑為
,則
的值為
A. B.
C.
D.0
8.若二次函數的值域為
,則
的最小值為
二.填空題:本大題共7小題,每小題5分(第14題第一空2分,第二空3分,第15題第一空3分,第二空2分),共35分.把答案填在答題卡中對應題號后的橫線上.
9.的值是
.
10.若向量與
共線,則
.
11.已知滿足約束條件
則
的最小值
.
12.雙曲線以一正方形兩頂點為焦點,另兩頂點在雙曲線上,則其離心率為 .
13.某商貿公司為了解員工對工資福利的滿意度,用分層抽樣的方法從銷售、財務、人事三個部門的員工中抽取一個容量為20的樣本。已知從人事部抽出了5人,從財務部中抽出本部門人數的,若銷售部門共有65人,則從財務部門抽出的人數為
人。
15.已知:對于給定的及映射
.若集合
且
中所有元素對應的象之和大于或等于
,則稱
為集合A的好子集.
① 對于,
,映射
,那么集合A的所有好子集的個數為 ;
② 對于給定的,
,映射
的對應關系如下表:
1
2
3
4
5
6
1
1
1
1
1
若當且僅當中含有
和至少A中2個整數或者
中至少含有A中5個整數時,
為集合A的好子集.寫出所有滿足條件的有序數組
:
三.解答題:本大題共6小題,共75分.解答應寫出文字說明,證明過程或演算步驟.
16.(本小題滿分12分)
已知函數.
(1)當時,求函數
的單調遞增區間;
(2)當時,若
,函數
的值域是
,求實數
的值.
17.(本小題滿分12分)
如圖所示,已知直四棱柱
中,
,
,且滿足
.
(1)求證:平面
;
(2)求二面角的余弦值.
18(本小題滿分12分)
當下的金融危機使得年輕人開始重視多種技能的學習,某培訓學校開設了計算機、英語、營銷管理3門繼續教育培訓課程,若一共有100人報名,且3門課程分別有80、50、25人次參加(一人可參加多門課程,不同課程之間學習沒有影響)。某記者隨機采訪了該校的2位學生。
(1)求至少有1人3門課程都參加了的概率。
(2)求3門課程中每一門恰有1人參加的概率。
19.(本小題滿分13分)
已知數列是等差數列,
;數列
的前n項和是
,且
.
(Ⅰ) 求數列的通項公式; (Ⅱ) 求證:數列
是等比數列;
(Ⅲ) 記,求
的前n項和
.
20.(本小題滿分13分)
已知函數f(x)=ax3-x2-x +a(a∈R且a≠0)
(1)若函數f(x)在(2,+∞)上為單調遞增區間,求a的取值范圍.
(2)若,討論方程:
根的個數。
21.(本小題滿分13分)
如圖,△ABC為直角三角形,
點C在x軸上移動。
(I)求點B的軌跡E的方程;
|