分析 (1)過D作DG∥AC交AB延長線于G,證得△AGD≌△DCE,得出AD=DE;
(2)進一步利用GD=CE,BD=CE得出BC=DC+2CF.
解答 證明:(1)如圖,
過D作DG∥AC交AB于G
∵△ABC是等邊三角形,AB=BC,
∴∠B=∠ACB=60°
∴∠BDG=∠ACB=60°,
∴∠BGD=60°
∴△BDG是等邊三角形,
∴BG=BD
∴AG=DC
∵CE是∠ACB外角的平分線,
∴∠DCE=120°=∠AGD
∵∠ADE=60°,
∴∠ADB+∠EDC=120°=∠ADB+∠DAG
∴∠EDC=∠DAG,
在△AGD和△DCE中,
$\left\{\begin{array}{l}{∠AGD=∠DCE}\\{AG=DC}\\{∠EDC=∠DAG}\end{array}\right.$,
∴△AGD≌△DCE(SAS)
∴AD=DE
(2)∵△AGD≌△DCE,
∴GD=CE,
∴BD=CE
∴BC=CE+DC=DC+2CF.
點評 此題主要考查了等邊三角形的性質以及全等三角形的判定,關鍵是利用邊角關系以及等量代換求得結論.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 9:16;3:4 | B. | 3:4;9:16 | C. | 9:4;9:16 | D. | 3:4;3:4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com