分析 (1)在Rt△ABD中,利用正弦的定義可得到AB=3AD=3,再根據勾股定理計算出BD=2$\sqrt{2}$,所以BC=BD+CD=2$\sqrt{2}$+1;
(2)先計算出CE=$\frac{1}{2}$BC=$\sqrt{2}$+$\frac{1}{2}$,則DE=CE-DE=$\sqrt{2}$-$\frac{1}{2}$,然后根據正切的定義求解.
解答 解:(1)在Rt△ABD中,∵sinB=$\frac{AD}{AB}$=$\frac{1}{3}$,
∴AB=3AD=3,
∴BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=$\sqrt{{3}^{2}-{1}^{2}}$=2$\sqrt{2}$,
∴BC=BD+CD=2$\sqrt{2}$+1;
(2)∵AE是BC邊上的中線,
∴CE=$\frac{1}{2}$BC=$\frac{1}{2}$(2$\sqrt{2}$+1)=$\sqrt{2}$+$\frac{1}{2}$,
∴DE=CE-DE=$\sqrt{2}$+$\frac{1}{2}$-1=$\sqrt{2}$-$\frac{1}{2}$,
∴tan∠DAE=$\frac{DE}{AD}$=$\frac{\sqrt{2}-\frac{1}{2}}{1}$=$\sqrt{2}$-$\frac{1}{2}$.
點評 本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 開口向下 | B. | 對稱軸是x=-2 | C. | 頂點坐標是(-2,2) | D. | 與x軸無交點 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com