分析 (1)由等腰三角形的性質得出∠C=∠B=30°,求出∠AEF=∠AFE=90°-30°=60°,得出∠EAF=60°=∠AEF=∠AFE,即可得出結論;
(2)由等邊三角形的性質得出AF=EF=AE,由三角形的外角性質得出∠B=∠FAB,證出BF=AF,同理:EC=AE,即可得出結論.
解答 (1)解:△AEF是等邊三角形;理由如下:
∵AB=AC,∠B=30°,
∴∠C=∠B=30°,
∵EA⊥AB,FA⊥AC,
∴∠AEF=∠AFE=90°-30°=60°,
∴∠EAF=60°=∠AEF=∠AFE,
∴△AEF是等邊三角形;
(2)證明:∵△AEF是等邊三角形,
∴AF=EF=AE,
∵∠AFE=∠B+∠FAB,
∴∠FAB=60°-30°=30°,
∴∠FAB=∠B,
∴BF=AF,
同理:EC=AE,
∴BF=EF=EC.
點評 本題考查了等邊三角形的判定與性質、等腰三角形的判定與性質、三角形的外角性質、直角三角形的性質;熟練掌握等邊三角形的判定與性質是解決問題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | y1>y2 | B. | y1<y2 | C. | y1=y2 | D. | 不能確定 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | k>0,b>0 | B. | k>0,b<0 | C. | k<0,b>0 | D. | k<0,b<0 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com