精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x軸和y軸上,點B的坐標為(6,4).雙曲線經過AB的中點D,且與BC交于點E,連接DE

1)求k的值和直線DE的解析式;

2)若點Py軸上一點,且△OPE的面積與四邊形ODBE的面積相等,求點P的坐標.

【答案】1;(2

【解析】

1)根據AB的中點D6,2)求得雙曲線解析式,繼而結合矩形的性質知點E3,4),待定系數法求得直線DE的解析式;

2)先利用割補法求得四邊形的面積,再依據△OPE的面積與四邊形ODBE的面積相等求得點P的縱坐標即可得出答案.

解:(1)∵點B的坐標為(6,4),

AB的中點D的坐標為(6,2),

將點D6,2)的坐標代入,得k=6×2=12

BCx軸,∴點E的縱坐標與點B的縱坐標相等,

∴點E的縱坐標為4

∵點E在雙曲線上,

,

∴點E在坐標為(34

設直線DE的解析式為,

將點D62)、E34)的坐標代入,

,解得:

∴直線DE的解析式為:

2)∵S四邊形ODBE=S矩形OABC-SOAD-SOCE

=6×4-×6×2-×4×3=12,

,即,

OP=8

∴點P的坐標為(0,8)或(0-8

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數與一次函數的圖象交于兩點,點,軸于點, 的面積是3,一次函數軸,軸分別交于點

1)求反比例函數與一次函數的表達式;

2)求的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形中,交于點,且的平分線于點

1)求證:四邊形是矩形;

2)若,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩地之間有一條筆直的公路,小明從甲地出發步行前往乙地,同時小亮從乙地出發騎自行車前往甲地,小亮到達甲地沒有停留,按原路原速返回,追上小明后兩人一起步行到乙地.如圖,線段OA表示小明與甲地的距離y1(米)與行走的時間x(分鐘)之間的函數關系:折線BCDA表示小亮與甲地的距離y2(米)與行走的時間x(分鐘)之間的函數關系.請根據圖象解答下列問題:

1)小明步行的速度是   /分鐘,小亮騎自行車的速度是   /分鐘;

2)線段OABC相交于點E,求點E坐標;

3)請直接寫出小亮從乙地出發到追上小明的過程中,與小明相距100米時x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD6,AB4,以AD為直徑在矩形內作半圓,點E為半圓上的一動點(不與A、D重合),連接DECE,當△DEC為等腰三角形時,DE的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,ABC=60°,BAD的平分線交CD于點E,交BC的延長線于點F,連接DF

1)求證:ABF是等邊三角形;

2)若CDF=45°CF=2,求AB的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,的直徑,上的一點,過點于點,交于點,且=

求證:的切線;

,,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形中,,點D是邊的中點,反比例函數的圖象經過點D,交邊于點E,直線的解析式為


1)求反比例函數的解析式和直線的解析式;

2)在y軸上找一點P,使的周長最小,求出此時點P的坐標;

3)在(2)的條件下,的周長最小值是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數圖象與反比例函數的圖象交于點,與軸交于點

1)求一次函數與反比例函數的解析式.

2)求點坐標.

3)平面上的點與點、、構成平行四邊形,請直接寫出滿足條件的點坐標______

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视