分析 (1)由AB∥CD根據兩直線平行內錯角相等可得;
(2)由AE=DF知AF=DE,根據CE⊥AD、BF⊥AD知∠AFB=∠DEC,證△ABF≌△DCE即可.
解答 證明:(1)∵AB∥CD,
∴∠A=∠D;
(2)∵AE=DF,
∴AE+EF=DF+EF,即AF=DE,
又∵CE⊥AD,BF⊥AD,
∴∠AFB=∠DEC=90°,
在△ABF和△DCE中,
∵$\left\{\begin{array}{l}{∠A=∠D}\\{AF=DE}\\{∠AFB=∠DEC}\end{array}\right.$,
∴△ABF≌△DCE(ASA),
∴BF=CE.
點評 本題主要考查平行線的性質和全等三角形的判定與性質,證明△ABF≌△DCE是關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 121(1+x)=100 | B. | 121(1-x)=100 | C. | 121(1-x)2=100 | D. | 100(1+x)2=121 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com