【題目】如圖1,拋物線:
與直線l:
交于x軸上的一點A,和另一點
求拋物線
的解析式;
點P是拋物線
上的一個動點
點P在A,B兩點之間,但不包括A,B兩點
于點M,
軸交AB于點N,求MN的最大值;
如圖2,將拋物線
繞頂點旋轉
后,再作適當平移得到拋物線
,已知拋物線
的頂點E在第一象限的拋物線
上,且拋持線
與拋物線
交于點D,過點D作
軸交拋物線
于點F,過點E作
軸交拋物線
于點G,是否存在這樣的拋物線
,使得四邊形DFEG為菱形?若存在,請求E點的橫坐標;若不存在,請說明理由.
【答案】(1);(2)
;(3)
點的橫坐標為
時,四邊形DFEG為菱形
【解析】
求直線l與x軸交點A坐標、B坐標,用待定系數法求拋物線
的解析式.
延長PN交x軸于點H,設點P橫坐標為m,由
軸可得點N、H橫坐標也為m,即能用m表示PN、NH、AH的長.由
及對頂角
可得
發現在
中,MN與PN比值即為
,故先在
中求
的值,再代入
,即得到MN與m的函數關系式,配方即求得MN最大值.
設點
,所以可設拋物線
頂點式為
令兩拋物線解析式
列得關于x的方程,解得兩拋物線的另一交點D即為拋物線
的頂點,故DG
,且求得DF平行且等于GE,即四邊形DFEG首先一定是平行四邊形.由DFEG為菱形可得
,故此時
為等邊三角形.利用特殊三角函數值作為等量關系列方程,即求得e的值.
解:直線l:
交x軸于點A,
,解得:
,
,
點
在直線l上,
,
,
拋物線
:
經過點A、B,
,
解得:,
拋物線
的解析式為
,
如圖1,延長PN交x軸于點H,
,
設 ,
軸,
,
,
,
,
,
中,
,
,
于點M,
,
,
,
中,
,
,
的最大值為
,
存在滿足條件的拋物線
,使得四邊形DFEG為菱形,
如圖2,連接DE,過點E作于點Q,
,
拋物線
頂點為
,
設 ,
拋物線
頂點式為
,
當,
解得:,
,
兩拋物線另一交點
為拋物線
頂點,
軸,
軸,
,
,
四邊形DFEG是平行四邊形,
若DFEG為菱形,則,
由拋物線對稱性可得:
,
,
是等邊三角形,
,
,
解得:舍去
,
,
點的橫坐標為
時,四邊形DFEG為菱形.
科目:初中數學 來源: 題型:
【題目】某校為迎接縣中學生籃球比賽,計劃購買A、B兩種籃球共20個供學生訓練使用.若購買A種籃球6個,則購買兩種籃球共需費用720元;若購買A種籃球12個,則購實兩種籃球共需費用840元.
(1)A、B兩種籃球共需單價各多少元?
(2)設購買A種籃球x個且A種籃球不少于8個,所需費用為y元,試確定y與x的關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:甲、乙兩地相距,一輛貨車和一輛轎車先后從甲地出發駛向乙地,線段
和折線
分別表示貨車和轎車離甲地的距離
與貨車出發時間
之間的函數關系,請根據圖象解答下列問題:
(1)貨車的速度為___________,當轎車到達乙地后,貨車距乙地的距離為____________千米;
(2)求轎車改變速度后與
的函數關系式;
(3)轎車到達乙地后,馬上沿原路以段速度返回,求轎車從乙地出發后多長時間再次與貨車相遇?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一般捕魚船在A處發出求救信號,位于A處正西方向的B處有一艘救援艇決定前去數援,但兩船之間有大片暗礁,無法直線到達.救援艇決定馬上調整方向,先向北偏東方以每小時30海里的速度航行,同時捕魚船向正北低速航行.30分鐘后,捕魚船到達距離A處
海里的D處,此時救援艇在C處測得D處在南偏東
的方向上.
求C、D兩點的距離;
捕魚船繼續低速向北航行,救援艇決定再次調整航向,沿CE方向前去救援,并且捕魚船和救援艇同達時到E處,若兩船航速不變,求
的正弦值.
參考數據:
,
,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形OABC的邊長為2,∠AOC=60°,點D為AB邊上的一點,經過O,A,D三點的拋物線與x軸的正半軸交于點E,連結AE交BC于點F,當DF⊥AB時,CE的長為__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線.
(2)若BC=2,sin∠BCP=
,求點B到AC的距離.
(3)在第(2)的條件下,求△ACP的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與
軸,
軸分別相交于
,
兩點,與反比例函數
的圖象交于點
,點
的橫坐標為4.
(1)求的值;
(2)過點作
軸,垂足為
,點
是該反比例函數
的圖象上一點,連接
,
,且
.
①求點的坐標;
②求點到直線
的距離
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com