分析 作DH⊥AB,設EH=x,DH=y,由BD△ABC的中線,于是得到S△ABD=$\frac{1}{2}$S△ABC=$\frac{1}{2}$AB.DH=$\frac{1}{2}$(2+2x)y=10,求得(1+x)y=10,①通過△BEF∽△BDH,根據相似三角形的性質得到$\frac{EF}{DH}=\frac{BE}{BH}$,即$\frac{1}{y}=\frac{2}{2+x}$,于是得到2y=2+x,②解方程組即可得到結論.
解答 解:作DH⊥AB于H,
設EH=x,DH=y,
∵BD△ABC的中線,
∴S△ABD=$\frac{1}{2}$S△ABC=$\frac{1}{2}$AB.DH=$\frac{1}{2}$(2+2x)y=10,
∴(1+x)y=10,①
∵DH⊥AB,CE⊥AB,
∴DH∥CE,
∴△BEF∽△BDH,
∴$\frac{EF}{DH}=\frac{BE}{BH}$,即$\frac{1}{y}=\frac{2}{2+x}$,
∴2y=2+x,②
由①②解得:x=3(負值舍去),
∴EH=3,
∵DH∥CE,AD=CD,
∴AE=2EH=6.
點評 本題考查了三角形的中位線的性質,三角形的面積,相似三角形的判定和性質,熟知三角形的面積公式是解答此題的關鍵
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com