【題目】如圖,某裝修公司要粉刷樓的外墻,需要測量樓CD的高度.已知在樓的外墻上從樓頂C處懸掛一廣告屏,其高CE為2米,測量員用高為1.7米的測量器,在A處測得屏幕底端E的仰角為35°,然后他正對大樓方向前進6米,在B處測得屏幕頂端C的仰角為45°.請根據測量數據,求樓CD的高度(參考數據:sin35°≈,cos35°≈
,tan35°≈
,結果精確到0.l米)
科目:初中數學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出件,每件盈利
元,為擴大銷售增加盈利,盡快減少庫存,商場決定采取適當的降價措施,經調查發現,如果每件襯衫每降價一元,市場每天可多售
件,問他降價多少元時,才能使每天所賺的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=6,AB=10,則DE的長為______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=BC=AC=12cm,現有兩點M、N分別從點A. 點B同時出發,沿三角形的邊運動,已知點M的速度為1cm/s,點N的速度為2cm/s.當點N第一次到達B點時,M、N同時停止運動.
(1)點M、N運動_________秒后,△AMN是等邊三角形?
(2)點M、N在BC邊上運動時,運動_______秒后得到以MN為底邊的等腰三角形△AMN?
(3)M、N同時運動幾秒后,△AMN是直角三角形?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4cm,點D是斜邊AB的中點,點E從點B出發以1cm/s的速度向點C運動,點F同時從點C出發以一定的速度沿射線CA方向運動,規定:當點E到終點C時停止運動;設運動的時間為x秒,連接DE、DF.
(1)填空:S△ABC= cm2;
(2)當x=1且點F運動的速度也是1cm/s時,求證:DE=DF;
(3)若動點F以3cm/s的速度沿射線CA方向運動;在點E、點F運動過程中,如果有某個時間x,使得△ADF的面積與△BDE的面積存在兩倍關系,請你直接寫出時間x的值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,A、B 兩點分別位于一個池塘的兩端,小明想用繩子測量A、B 間的距離,但繩子不夠長,請你利用三角形全等的相關知識幫他設計一種方案測量出A、B間的距離,寫出具體的方案,并解釋其中的道理,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】自年
月
日零時起,高鐵開通,某旅行社為吸引廣大市民組團去仙都旅游,推出了如下收費標準:如果人數不超過
人,人均旅游費用為
元,如果人數超過
人,每增加
人,人均旅游費用降低
元,但人均旅游費用不得低于
元.
如果某單位組織
人參加仙都旅游,那么需支付旅行社旅游費用________元;
現某單位組織員工去仙都旅游,共支付給該旅行社旅游費用
元,那么該單位有多少名員工參加旅游?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一張長12cm、寬5cm的矩形紙片內,要折出一個菱形.小華同學按照取兩組對邊中點的方法折出菱形EFGH(見方案一),小麗同學沿矩形的對角線AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(見方案二).
(1)你能說出小華、小麗所折出的菱形的理由嗎?
(2)請你通過計算,比較小華和小麗同學的折法中,哪種菱形面積較大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com