【題目】如圖,反比例函數經過點
;
(1)求反比例函數的解析式;
(2)點在
軸的正半軸上,點
在
軸的正半軸上,直線
經過點
,直線
交反比例函數圖象于另一點
,若
,求點
的坐標.
【答案】(1);(2)(2,1)
【解析】
(1)將點A的坐標代入反比例函數解析式中即可求出結論;
(2)設直線CD的解析式為y=ax+b,即可求出點C和點D的坐標,然后將點A和點D的坐標代入解析式中即可求出直線CD的解析式,然后聯立方程求交點坐標即可.
解:(1)將點代入反比例函數解析式中,得
解得:k=2
∴反比例函數的解析式為;
(2)設直線CD的解析式為y=ax+b,
將x=0代入可得y=b
∴點C的坐標為(0,b),
∵
∴點D的坐標為(b,0)
將點A和點D的坐標代入y=ax+b中,得
解得:
∴直線CD的解析式為y=-x+3
聯立
解得:或
,其中(1,2)為點A的坐標
∴點B的坐標為(2,1)
科目:初中數學 來源: 題型:
【題目】如圖,矩形的對角線交于點
.點
在
邊上,
連結
交對角線
于點
是線段
的中點,連結
.
(1)求證:.
(2)判斷與
的數量關系,并說明理由.
(3)若和
面積分別為
和
,求
的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線過點
.
(1)若點也在該拋物線上,請用含
的關系式表示
;
(2)若該拋物線上任意不同兩點、
都滿足:當
時,
;當
時,
;若以原點
為圓心,
為半徑的圓與拋物線的另兩個交點為
、
(點
在點
左側),且
有一個內角為
,求拋物線的解析式;
(3)在(2)的條件下,若點與點
關于點
對稱,且
、
、
三點共線,求證:
平分
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規定,該種玩具每件利潤不能超過60元),每天可售出50件.根據市場調查發現,銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出
件.
(1)請寫出與
之間的函數表達式;
(2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?
(3)設超市每天銷售這種玩具可獲利元,當
為多少時
最大,最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,將二次函數y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個單位,再向上平移5個單位,得到二次函數y=ax2+bx+c的圖象.函數y=x2+2x+1的圖象的頂點為點A.函數y=ax2+bx+c的圖象的頂點為點C,兩函數圖象分別交于B、D兩點.
(1)求函數y=ax2+bx+c的解析式;
(2)如圖2,連接AD、CD、BC、AB,判斷四邊形ABCD的形狀,并說明理由.
(3)如圖3,連接BD,點M是y軸上的動點,在平面內是否存在一點N,使以B、D、M、N為頂點的四邊形為矩形?若存在,請求出N點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在以“青春心向覺,建功新時代”為主題的校園文化藝術節期間,舉辦了合唱,
群舞,
書法,
演講共四個項目的比賽,要求每位學生必須參加且僅參加一項,小紅隨機調查了部分學生的報名情況,并繪制了下列兩幅不完整的統計圖,請根據統計圖中信息解答下列問題:
(1)本次調查的學生總人數是多少?扇形統計圖中“”部分的圓心角度數是多少?
(2)請將條形統計圖補充完整;
(3)若全校共有1800名學生,請估計該校報名參加書法和演講比賽的學生共有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在6.26國際禁毒日到來之際,重慶市教委為了普及禁毒知識,提高禁毒意識,舉辦了“關愛生命,拒絕毒品”的知識競賽.某校初一、初二年級分別有300人,現從中各隨機抽取20名同學的測試成績進行調查分析,成績如下:
(1)根據上述數據,將下列表格補充完成.
(整理、描述數據):
分數段 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
初一人數 | 2 | _______ | _______ | 12 |
初二人數 | 2 | 2 | 1 | 15 |
(分析數據):樣本數據的平均數、中位數、滿分率如表:
年級 | 平均數 | 中位數 | 滿分率 |
初一 | 93 | ________ | |
初二 | ________ |
(得出結論):
(2)估計該校初一、初二年級學生在本次測試成績中可以得到滿分的人數共______人;
(3)你認為哪個年級掌握禁毒知識的總體水平較好,請從兩個方面說明你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com