【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于E,PF⊥CD于F,連接EF,給出下列四個結論,其中正確結論的序號是( )
①AP=EF;②∠PFE=∠BAP;③△APD一定是等腰三角形;④PD=EC.
A.①②④B.②④C.①②③D.①③④
【答案】A
【解析】
連接PC,由正方形的性質得出∠ABP=∠CBP=45°,然后由SAS證明△ABP≌△CBP,得出AP=PC,∠BAP=∠BCP,由矩形的性質得出EF=PC,PF=EC,再判斷出△PDF是等腰直角三角形,然后根據等腰直角三角形的性質解答即可,△APD只有點P為BD的中點或PD=AD時是等腰三角形,即可得出結果.
解:連接PC,如圖所示:
在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,
∵在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴AP=PC,∠BAP=∠BCP,
∵PE⊥BC,PF⊥CD,
∴四邊形PECF是矩形,
∴PC=EF,∠BCP=∠PFE,
∴AP=EF,∠PFE=∠BAP,故①②正確;
∵PF⊥CD,∠BDC=45°,
∴△PDF是等腰直角三角形,
∴PD=PF,
∵矩形的對邊PF=EC,
∴PD=EC,故④正確;
只有點P為BD的中點或PD=AD時,△APD是等腰三角形,故③錯誤;
綜上所述,正確的結論有①②④,
故選:A.
科目:初中數學 來源: 題型:
【題目】已知中,
,
的面積為42.
(1)如圖,若點分別是邊
的中點,則四邊形
的面積是__________.
(2)如圖,若圖中所有的三角形均相似,其中最小的三角形面積為1,則四邊形的面積是___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解全校學生主題閱讀的情況,隨機抽查了部分學生在某一周主題閱讀文章的篇數,并制成下列統計圖表.
請根據統計圖表中的信息,解答下列問題:
(1)求被抽查的學生人數和m的值;
(2)求本次抽查的學生文章閱讀篇數的中位數和眾數;
(3)若該校共有1200名學生,根據抽查結果,估計該校學生在這一周內文章閱讀的篇數為4篇的人數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形EFGH內接于△ABC,且邊FG落在BC上,若AD⊥BC,BC=30,AD=20,EF=EH.
(1)求證:△AEH∽△ABC;
(2)求矩形EFGH的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,將∠ABC對折,使點C的對應點H恰好落在直線AB上,折痕交AC于點O,以點O為坐標原點,AC所在直線為x軸建立平面直角坐標系
(1)求過A、B、O三點的拋物線解析式;
(2)若在線段AB上有一動點P,過P點作x軸的垂線,交拋物線于M,設PM的長度等于d,試探究d有無最大值,如果有,請求出最大值,如果沒有,請說明理由.
(3)若在拋物線上有一點E,在對稱軸上有一點F,且以O、A、E、F為頂點的四邊形為平行四邊形,試求出點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于一個函數,自變量x取a時,函數值y也等于a,我們稱a為這個函數的不動點.如果二次函數y=x2+2x+c有兩個相異的不動點x1、x2,且x1<1<x2,則c的取值范圍是( )
A. c<﹣3B. c<﹣2C. c<D. c<1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△OAB與△OCD是以點0為位似中心的位似圖形,相似比為1:2,∠OCD=90,CO=CD.若B(2,0),則點C的坐標為( )
A. (2,2) B. (1,2) C. (,2
) D. (2,1)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com