【題目】在梯形中,
,
,
,
,
.點
為
上一點,過點
作
交邊
于點
.將
沿直線
翻折得到
,當
過點
時,
的長為__________.
【答案】
【解析】
根據平行線的性質得到∠A=∠EFB,∠GFE=∠AMF,根據軸對稱的性質得到∠GFE=∠BFE,求得∠A=∠AMF,得到AF=FM,作DQ⊥AB于點Q,求得∠AQD=∠DQB=90 .根據矩形的性質得到CD=QB=2,QD=CB=6,求得AQ=102=8,根據勾股定理得到AD=
=10,設EB=3x,求得FB=4x,CE=63x,求得AF=MF=104x,GM=8x10,根據相似三角形的性質得到GD=6x
,求得DE=
3x,根據勾股定理列方程即可得到結論.
如圖,∵EF∥AD,
∴∠A=∠EFB,∠GFE=∠AMF,
∵△GFE與△BFE關于EF對稱,
∴△GFE≌△BFE,
∴∠GFE=∠BFE,
∴∠A=∠AMF,
∴△AMF是等腰三角形,
∴AF=FM,
作DQ⊥AB于點Q,
∴∠AQD=∠DQB=90.
∵AB∥DC,
∴∠CDQ=90.
∵∠B=90,
∴四邊形CDQB是矩形,
∴CD=QB=2,QD=CB=6,
∴AQ=102=8,
在Rt△ADQ中,由勾股定理得
AD==10,
∵tanA=,
∴tan∠EFB=,
設EB=3x,
∴FB=4x,CE=63x,
∴AF=MF=104x,
∴GM=8x10,
∵∠G=∠B=∠DQA=90°,∠GMD=∠A,
∴△DGM∽△DQA,
∴,
∴GD=6x,
∴DE=3x,
在Rt△CED中,由勾股定理得
(3x)2(63x)2=4,
解得:3x=,
∴當EG過點D時BE=.
故答案為:.
科目:初中數學 來源: 題型:
【題目】拋物線(
)的部分圖象如圖所示,與
軸的一個交點坐標為
,拋物線的對稱軸是
,下列結論是:①
;②
;③方程
有兩個不相等的實數根;④
;⑤若點
在該拋物線上,則
,其中正確的個數有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為加快城鄉對接,建設全域美麗鄉村,某地區對A、B兩地間的公路進行建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°,
(1)開通隧道前,汽車從A地到B地大約要走多少千米?
(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結果精確到1千米)(參考數據:=1.4,
=1.7)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一汽車租賃公司擁有某種型號的汽車100輛.公司在經營中發現每輛車的月租金x(元)與每月租出的車輛數(y)有如下關系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學過的一次函數、反比例函數或二次函數的有關知識求出每月租出的車輛數y(輛)與每輛車的月租金x(元)之間的關系式.
(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數式填表:
租出的車輛數 | 未租出的車輛數 | ||
租出每輛車的月收益 | 所有未租出的車輛每月的維護費 |
(3)若你是該公司的經理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+2x+a交x軸于點A,B,交y軸于點C,點A的橫坐標為﹣2.
(1)求拋物線的對稱軸和函數表達式.
(2)連結BC線段,BC上有一點D,過點D作x軸的平行線交拋物線于點E,F,若EF=6,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在梯形中,
,
,
,點
在對角線
上(不與點
重合),
,
的延長線與射線
交于點
,設
的長為
.
(1)如圖,當時,求
的長;
(2)設的長為
,求
關于
的函數解析式,并直接寫出定義域;
(3)當是等腰三角形時,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級決定購買學習用具對在本次適應性考以中成績突出的同學進行獎勵,其中計劃購買,A、B兩種型號的鋼筆共45支,已知A種鋼筆的單價為7元/支,購買B種鋼筆所需費用y(元)與購買數量x(支)之間存在如圖所示的函數關系式.
(1)求y與x的函數關系式;
(2)若購買計劃中,B種鋼筆的數最不超過35支,但不少于A種鋼筆的數量,請設計購買方案,使總費用最低,并求出最低費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,連接BD、CE.將△ADE繞點A旋轉,BD、CE也隨之運動.
(1)求證:BD=CE;
(2)在△ADE繞點A旋轉過程中,當AE∥BC時,求∠DAC的度數;
(3)如圖②,當點D恰好是△ABC的外心時,連接DC,判斷四邊形ADCE的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,直線l1⊥x軸于點(1,0),直線l2⊥x軸于點(2,0),直線l3⊥x軸于點(3,0),…,直線ln⊥x軸于點(n,0).函數y=x的圖象與直線l1,l2,l3,…,ln分別交于點A1,A2,A3,…,An;函數y=2x的圖象與直線l1,l2,l3,…,ln分別交于點B1,B2,B3,…,Bn.如果△OA1B1的面積記作S1,四邊形A1A2B2B1的面積記作S2,四邊形A2A3B3B2的面積記作S3,…,四邊形An-1AnBnBn-1的面積記作Sn,那么S2019=______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com