分析 連接EC交于AD于點P,由等腰三角形三線和一的性質可知AD是BC的垂直平分線,從而可證明BP=PC,故此PE+PB的最小值=EC,然后證明△ACE≌△CAD,從而得到EC=AD.
解答 解:連接EC交于AD于點P.
∵AB=AC,BD=DC,
∴AD⊥BC.
∴AD是BC的垂直平分線.
∴PB=PC.
∴PE+PB=EP+PC=EC.
∵△ABC為等邊三角形,
∴∠EAC=∠ACD=60°,AB=BC.
∵點E和點D分別是AB和BC的中點,
∴AE=DC.
在△ACE和△CAD中,$\left\{\begin{array}{l}{AE=DC}\\{∠EAC=∠ACD}\\{AC=CA}\end{array}\right.$,
∴△ACE≌△CAD.
∴EC=AD=2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.
點評 本題主要考查的是軸對稱路徑最短問題,明確當點E、P、C在一條直線上時,PE+PB有最小值是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 0>|-10| | B. | -(-$\frac{1}{9}$)>-|-$\frac{1}{10}$| | C. | |-3|<|+3| | D. | -1>-0.01 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\overrightarrow{OA}$ | B. | $\overrightarrow{OB}$ | C. | $\overrightarrow{OC}$ | D. | $\overrightarrow{OD}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com