精英家教網 > 初中數學 > 題目詳情
19.已知∠AOE是平角,OD平分∠COE,OB平分∠AOC,∠DOE:∠BOC=2:3,求∠DOC,∠BOC的度數.

分析 利用平角的定義結合角平分線的性質得出∠BOC=$\frac{1}{2}$∠AOC,∠DOC=$\frac{1}{2}$∠COE,進而利用∠DOE:∠BOC=2:3求出答案.

解答 解:如圖所示:
∵∠AOE是平角,OD平分∠COE,OB平分∠AOC,
∴∠BOC=$\frac{1}{2}$∠AOC,∠DOC=$\frac{1}{2}$∠COE,
∴∠BOD=$\frac{1}{2}$(∠AOC+∠COE)=90°,
∵∠DOE:∠BOC=2:3,
∴∠DOC:∠BOC=2:3,
∴∠DOC=$\frac{2}{5}$×90°=36°,
∠BOC=$\frac{3}{5}$×90°=54°.

點評 此題主要考查了角平分線的定義,正確把握角平分線的性質是解題關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

9.計算:
(1)(a23+(a32-3a•a5       
(2)(2a3b32+(-2a2b23
(3)(-2a2b3)•(-3a)              
(4)(x-1)(2x+3)

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

10.下了四個圖形中,既是軸對稱圖形又是中心對稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

7.如圖,在邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC(頂點是網格線的交點)和點A1
(1)將△ABC平移后得到格點△A1B1C1,且A與A1是對應點;
(2)將△ABC繞點A逆時針旋轉90°,請作出旋轉后的三角形,并求在這一旋轉過程中△ABC掃過的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

14.如圖,拋物線C1是二次函數y=x2-10x在第四象限的一段圖象,它與x軸的交點是O、A1;將C1繞點A1旋轉180°后得拋物線C2;交x軸于點A2;再將拋物線C2繞A2點旋轉180°后得拋物線C3,交x軸于點A3;如此反復進行下去…
(1)拋物線C3與x軸的交點A3的坐標是多少?拋物線Cn與x軸的交點An的坐標是多少?
(2)若某段拋物線上有一點P(2016,a),試求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

4.兩個連續偶數的積為168,設較大的偶數為x,則得到關于x的方程是x(x-2)=168.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

11.育才中學八年級甲、乙兩個班共104名同學游公園,其中甲班人數較少,不到50人,乙班人數較多,有50多人.經估算,如果兩班都以班為單位分別購票,則一共應付1240元.
公園的門票價格規定如表:
購票人數1~50人51~100人100人以上
每人門票價13元11元9元
(1)分別求出甲、乙兩班各有多少名學生.
(2)如果兩班聯合起來,作為一個團體購票,兩個班能節省多少錢.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

8.要估計魚塘中的魚數,養魚者首先從魚塘中打撈了50條魚,在每條魚身上做好記號后把這些魚放歸魚塘,再從魚塘中打撈100條,發現只有兩條魚是剛才做了記號的魚,假設在魚塘內魚均勻分布,那么估計這個魚塘的魚數約為2500.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

9.下列式子中,計算結果為-1的是( 。
A.|-1|B.-(-1)C.-12D.(-1)2

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视