【題目】在現代社會中,信號處理是非常關鍵的技術,我們通過每天都在使用的電話或者互聯網就能感受到,而信號處理背后的“功臣”就是正弦型函數.函數的圖象就可以近似的模擬某種信號的波形,則下列說法正確的是( )
A.函數為周期函數,且最小正周期為
B.函數為奇函數
C.函數的圖象關于直線
對稱
D.函數的導函數
的最大值為
科目:高中數學 來源: 題型:
【題目】設函數f(x)為奇函數,且當x≥0時,f(x)=ex﹣cosx,則不等式f(2x﹣1)+f(x﹣2)>0的解集為( )
A.(﹣∞,1)B.(﹣∞,)C.(
,+∞)D.(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國詩詞大會的播出引發了全民讀書熱,某學校語文老師在班里開展了一次詩詞默寫比賽,班里40名學生得分數據的莖葉圖如右圖,若規定得分不低于85分的學生得到“詩詞達人”的稱號,低于85分且不低于70分的學生得到“詩詞能手”的稱號,其他學生得到“詩詞愛好者”的稱號.根據該次比賽的成績按照稱號的不同進行分層抽樣抽選10名學生,則抽選的學生中獲得“詩詞能手”稱號的人數為( )
A. 6B. 5C. 4D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點,焦點在x軸上的橢圓,離心率,且經過拋物線
的焦點.若過點
的直線
斜率不等于零
與橢圓交于不同的兩點E、
在B、F之間
,
求橢圓的標準方程;
求直線l斜率的取值范圍;
若
與
面積之比為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的方程為
,則下列結論正確的是( )
A.當時,曲線
為橢圓,其焦距為
B.當時,曲線
為雙曲線,其離心率為
C.存在實數使得曲線
為焦點在
軸上的雙曲線
D.當時,曲線
為雙曲線,其漸近線與圓
相切
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了嚴格監控某種零件的一條生產線的生產過程,某企業每天從該生產線上隨機抽取10000個零件,并測量其內徑(單位:).根據長期生產經驗,認為這條生產線正常狀態下生產的零件的內徑
服從正態分布
.如果加工的零件內徑小于
或大于
均為不合格品,其余為合格品.
(1)假設生產狀態正常,請估計一天內抽取的10000個零件中不合格品的個數約為多少;
(2)若生產的某件產品為合格品則該件產品盈利;若生產的某件產品為不合格品則該件產品虧損.已知每件產品的利潤(單位:元)與零件的內徑
有如下關系:
.求該企業一天從生產線上隨機抽取10000個零件的平均利潤.
附:若隨機變量服從正態分布
,有
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,曲線
在點
,
(1)
處的切線方程為
.
(1)求函數的解析式,并證明:
.
(2)已知,且函數
與函數
的圖象交于
,
,
,
兩點,且線段
的中點為
,
,證明:
(1)
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,E、F、G分別為AA1、BC、C1D1的中點,現有下面三個結論:①△EFG為正三角形;②異面直線A1G與C1F所成角為60°;③AC∥平面EFG.其中所有正確結論的編號是( )
A.①B.②③C.①②D.①③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com