精英家教網 > 高中數學 > 題目詳情

【題目】如圖,正方體的棱長為1,的中點,為線段上的動點,過點的平面截該正方體所得的截面記為,給出下列三個結論:

時,為四邊形;

時,為等腰梯形;

時,的面積為

以上結論正確的個數是(

A.0B.1C.2D.3

【答案】D

【解析】

根據題意作出滿足條件的圖形,由線線,線面,面面關系結合正方體的結構特征找出截面再論證得到結論.

時,即QCC1中點時,如圖所示:

因為平面平面,所以 ,又

所以截面APQD1為等腰梯形,故②正確;

由上圖當點QC移動時,滿足,只需在DD1上取點M滿足,如圖所示:

故可得截面APQM為四邊形,故①正確;

時,QC1重合,如圖所示:

的中點F,連接AF 因為平面平面,所以,且,又,所以截面APC1F為菱形,所以其面積,故③正確.

故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】關于函數有如下四個結論:

是偶函數;②在區間上單調遞增;③最大值為;④上有四個零點,其中正確命題的序號是_______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代數學文化的優秀遺產,數學家劉徽在注解《九章算術》時,發現當圓內接正多邊行的邊數無限增加時,多邊形的面積可無限逼近圓的面積,為此他創立了割圓術,利用割圓術,劉徽得到了圓周率精確到小數點后四位3.1416,后人稱3.14為徽率,如圖是利用劉徽的割圓術設計的程序框圖,若結束程序時,則輸出的為( )(,

A. 6 B. 12 C. 24 D. 48

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義域為R的偶函數f(x)滿足對xR,有f(x+2)=f(x)﹣f(1),且當x[2,3]時,f(x)=﹣2x2+12x18,若函數yf(x)﹣loga(|x|+1)至少有6個零點,則a的取值范圍是( )

A.(0,)B.(0,)C.(0,)D.(0)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】方程為的曲線,給出下列四個結論:

① 關于軸對稱;

② 關于坐標原點對稱;

③ 關于軸對稱;

,;

以上結論正確的個數是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在銳角△ABC中,AB=AC,∠ACB的平分線與AB交于點D,過△ABC的外心OCD的垂線與AC交于點E,過EAB的平行線與CD交于點F。證明

(1)C、E、0、F四點共圓;

(2)A、0、F三點共線;

(3)EA=EF。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若存在實常數,使得函數對其公共定義域上的任意實數都滿足:恒成立,則稱此直線的“隔離直線”,已知函數,,,下列命題為真命題的是( )

A.內單調遞減

B.之間存在“隔離直線”,且的最小值為

C.之間存在“隔離直線”,且的取值范圍是

D.之間存在唯一的“隔離直線”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】羅馬數字是歐洲在阿拉伯數字傳入之前使用的一種數碼,它的產生標志著一種古代文明的進步.羅馬數字的表示法如下:

數字

1

2

3

4

5

6

7

8

9

形式

其中需要1根火柴,“X”需要2根火柴,若為0,則用空位表示. (如123表示為,405表示為)如果把6根火柴以適當的方式全部放入下面的表格中,那么可以表示的不同的三位數的個數為(

A.87B.95C.100D.103

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點是拋物線的焦點,若點在拋物線上,且

求拋物線的方程;

動直線與拋物線相交于兩點,問:在軸上是否存在定點其中,使得向量與向量共線其中為坐標原點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视