【題目】如圖,正方體的棱長為1,
為
的中點,
為線段
上的動點,過點
的平面截該正方體所得的截面記為
,給出下列三個結論:
① 當時,
為四邊形;
② 當時,
為等腰梯形;
③ 當時,
的面積為
;
以上結論正確的個數是( )
A.0B.1C.2D.3
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代數學文化的優秀遺產,數學家劉徽在注解《九章算術》時,發現當圓內接正多邊行的邊數無限增加時,多邊形的面積可無限逼近圓的面積,為此他創立了割圓術,利用割圓術,劉徽得到了圓周率精確到小數點后四位3.1416,后人稱3.14為徽率,如圖是利用劉徽的割圓術設計的程序框圖,若結束程序時,則輸出的為( )(
,
,
)
A. 6 B. 12 C. 24 D. 48
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義域為R的偶函數f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數y=f(x)﹣loga(|x|+1)至少有6個零點,則a的取值范圍是( )
A.(0,)B.(0,
)C.(0,
)D.(0,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】方程為的曲線,給出下列四個結論:
① 關于軸對稱;
② 關于坐標原點對稱;
③ 關于軸對稱;
④ ,
;
以上結論正確的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在銳角△ABC中,AB=AC,∠ACB的平分線與AB交于點D,過△ABC的外心O作CD的垂線與AC交于點E,過E作AB的平行線與CD交于點F。證明:
(1)C、E、0、F四點共圓;
(2)A、0、F三點共線;
(3)EA=EF。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在實常數和
,使得函數
和
對其公共定義域上的任意實數
都滿足:
和
恒成立,則稱此直線
為
和
的“隔離直線”,已知函數
,
,
,下列命題為真命題的是( )
A.在
內單調遞減
B.和
之間存在“隔離直線”,且
的最小值為
C.和
之間存在“隔離直線”,且
的取值范圍是
D.和
之間存在唯一的“隔離直線”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】羅馬數字是歐洲在阿拉伯數字傳入之前使用的一種數碼,它的產生標志著一種古代文明的進步.羅馬數字的表示法如下:
數字 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
形式 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅶ | Ⅷ | Ⅸ |
其中“Ⅰ”需要1根火柴,“Ⅴ”與“X”需要2根火柴,若為0,則用空位表示. (如123表示為,405表示為
)如果把6根火柴以適當的方式全部放入下面的表格中,那么可以表示的不同的三位數的個數為( )
A.87B.95C.100D.103
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是拋物線
的焦點,若點
在拋物線
上,且
求拋物線
的方程;
動直線
與拋物線
相交于
兩點,問:在
軸上是否存在定點
其中
,使得向量
與向量
共線
其中
為坐標原點
?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com