【題目】某地政府為了幫助當地農民脫貧致富,開發了一種新型水果類食品,該食品生產成本為每件8元.當天生產當天銷售時,銷售價為每件12元,當天未賣出的則只能賣給水果罐頭廠,每件只能賣5元.每天的銷售量與當天的氣溫有關,根據市場調查,若氣溫不低于,則銷售5000件;若氣溫位于
,則銷售3500件;若氣溫低于
,則銷售2000件.為制定今年8月份的生產計劃,統計了前三年8月份的氣溫范圍數據,得到下面的頻數分布表:
氣溫范圍 (單位: | |||||
天數 | 4 | 14 | 36 | 21 | 15 |
以氣溫范圍位于各區間的頻率代替氣溫范圍位于該區間的概率.
(1)求今年8月份這種食品一天銷售量(單位:件)的分布列和數學期望值;
(2)設8月份一天銷售這種食品的利潤為(單位:元),當8月份這種食品一天生產量
(單位:件)為多少時,
的數學期望值最大,最大值為多少
【答案】(1)見解析,; (2)當
時,
的數學期望達到最大值,最大值為
.
【解析】
(1)今年8月份這種食品一天的銷量的可能取值為2000、3500、5000件,求出
,
和
,即可求得隨機變量
的分布列和數學期望.
(2)由題意知,這種食品一天的需求量至多為5000件,至少為2000件,所以只需要考慮.分別討論,
和
,即可求得
的數學期望最大值.
(1)今年8月份這種食品一天的銷量的可能取值為2000、3500、5000件,
于是的分布列為:
2000 | 3500 | 5000 | |
0.2 | 0.4 | 0.4 |
的數學期望為
.
(2)由題意知,這種食品一天的需求量至多為5000件,至少為2000件,
只需要考慮
,
當時,
若氣溫不低于30度,則;
若氣溫位于,則
;
若氣溫低于25度,則;
此時,
當時,
若氣溫不低于25度,則;
若氣溫低于25度,則;
此時;
時,
的數學期望達到最大值,最大值為
.
科目:高中數學 來源: 題型:
【題目】已知、
、
、
是同一平面上不共線的四點,若存在一組正實數
、
、
,使得
,則三個角
、
、
( )
A. 都是鈍角B. 至少有兩個鈍角
C. 恰有兩個鈍角D. 至多有兩個鈍角
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的值域是
,有下列結論:①當
時,
; ②當
時,
;③當
時,
; ④當
時,
.其中結論正確的所有的序號是( ).
A.①②B.③④C.②③D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合(
,且
),若存在非空集合
,使得
,且
,并任意
,都有
,則稱集合S具有性質P,
稱為集合S的P子集.
(1)當時,試說明集合S具有性質P,并寫出相應的P子集
;
(2)若集合S具有性質P,集合T是集合S的一個P子集,設,求證:任意
,
,都有
;
(3)求證:對任意正整數,集合S具有性質P.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】英國統計學家E.H.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結果如下表所示(單位:件):
法官甲 | 法官乙 | ||||||
終審結果 | 民事庭 | 行政庭 | 合計 | 終審結果 | 民事庭 | 行政庭 | 合計 |
維持 | 29 | 100 | 129 | 維持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合計 | 32 | 118 | 150 | 合計 | 100 | 25 | 125 |
記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,
和
,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為
,
和
,則下面說法正確的是
A. ,
,
B.
,
,
C. ,
,
D.
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,點
在橢圓
上,焦點為
,圓O的直徑為
.
(1)求橢圓C及圓O的標準方程;
(2)設直線l與圓O相切于第一象限內的點P,且直線l與橢圓C交于兩點.記
的面積為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國已進入新時代中國特色社會主義時期,人民生活水平不斷提高.某市隨機統計了城區若干戶市民十月人均生活支出比九月人均生活支出增加量(記為P元)的情況,并根據統計數據制成如圖頻率分布直方圖.
(1)根據頻率分布直方圖估算P的平均值;
(2)若該市城區有4戶市民十月人均生活支出比九月人均生活支出分別增加了42元,50元,52元,60元,從這4戶中隨機抽取2戶,求這2戶P值的和超過100元的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com