精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,若方程有四個不等實根,時,不等式恒成立,則實數的最小值為()

A. B. C. D.

【答案】C

【解析】

畫出函數fx的圖象,結合對數函數的圖象和性質,可得x1x21x1+x22,(4x3)(4x4)=1,且x1+x2+x3+x48,則不等式kx3x4+x12+x22k+11恒成立,可化為:k恒成立,求出的最大值,可得k的范圍,進而得到實數k的最小值.

函數fx的圖象如下圖所示:

當方程fx)=m有四個不等實根x1x2,x3,x4x1x2x3x4)時,

|lnx1||lnx2|,即x1x21,x1+x22,

|ln4x3||ln4x4|,即(4x3)(4x4)=1,

x1+x2+x3+x48

若不等式kx3x4+x12+x22k+11恒成立,

k恒成立,

[x1+x2)﹣48]2

k2,

故實數k的最小值為2,

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知矩形所在平面垂直于直角梯所在平面,平面平面,且,且.

(1)設點為棱中點,在內是否存在點,使得平面?若存在,請證明,若不存在,說明理由

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從2011年到2018年參加“北約”,“華約”考試而獲得加分的學生(每位學生只能參加“北約”,“華約”一種考試)人數可以通過以下表格反映出來.(為了方便計算,將2011年編號為1,2012年編號為2,依此類推……

年份x

1

2

3

4

5

6

7

8

人數y

2

3

4

4

7

7

6

6

1)據悉,該校2018年獲得加分的6位同學中,有1位獲得加20分,2位獲得加15分,3位獲得加10分,從該6位同學中任取兩位,記該兩位同學獲得的加分之和為X,求X的分布列及期望.

2)根據最近五年的數據,利用最小二乘法求出yx之間的線性回歸方程,并用以預測該校2019年參加“北約”,“華約”考試而獲得加分的學生人數.(結果要求四舍五入至個位)

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系.xOy中,曲線C1的參數方程為 為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.

1)求曲線C1的普通方程和C2的直角坐標方程;

2)已知曲線C2的極坐標方程為,點A是曲線C3C1的交點,點B是曲線C3C2的交點,且AB均異于原點O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,其中.對一切恒成立,則①;②;③既不是奇函數也不是偶函數;④的單調遞增區間是;⑤存在經過點的直線與函數的圖像不相交.以上結論正確的是________________.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數方程為 (t為參數),在以直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)若直線l與曲線C相交于AB兩點,求△AOB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某產品的三個質量指標分別為x, y, z, 用綜合指標S =" x" + y + z評價該產品的等級. S≤4, 則該產品為一等品. 現從一批該產品中, 隨機抽取10件產品作為樣本, 其質量指標列表如下:

產品編號

A1

A2

A3

A4

A5

質量指標(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產品編號

A6

A7

A8

A9

A10

質量指標(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(Ⅰ) 利用上表提供的樣本數據估計該批產品的一等品率;

(Ⅱ) 在該樣品的一等品中, 隨機抽取兩件產品,

(1) 用產品編號列出所有可能的結果;

(2) 設事件B在取出的2件產品中, 每件產品的綜合指標S都等于4”, 求事件B發生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】南北朝時代的偉大數學家祖暅在數學上有突出貢獻,他在實踐的基礎上提出祖暅原理:冪勢既同,則積不容異”.其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面的面積分別為,則總相等相等的(

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1在點處的切線方程為,求的值;

2)對任意的恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视