精英家教網 > 高中數學 > 題目詳情

【題目】若函數在處的切線與直線平行,則實數____

當a≤0時,若方程有且只有一個實根,則實數的取值范圍為_________.

【答案】 1

【解析】 (1)f(x)=x3+3ax1,得到f′(x)=3x2+3a

因為曲線在x=1處的切線與y=6x+6平行,

y=6x+6的斜率為6,

所以f′(1)=6,即3+3a=6,解得a=1;

(2)g(x)=x3+3ax16,

g′(x)=3x2+3a=3(x2+a),

a=0,g′(x)0,g(x)R遞增,

x∞時,g(x)→∞,x→+∞時,g(x)→+∞,

故函數g(x)有且只有一個零點,

即方程f(x)=15有且只有一個實根,

a<0,g′(x)>0,解得: ,

g′(x)<0,解得:

g(x) 遞增,遞減,遞增,

g(x)極大值 ,

解得: ,

綜上:-4<a0.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為實數,函數.

1)求的極值;

2)當在什么范圍內取值時,曲線軸僅有一個交點?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在梯形中, , , ,平面平面,四邊形是菱形, .

(1)求證: 平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設計一個算法計算1×3×5×7×…×99值的算法,畫出程序框圖,寫出程序.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,已知曲線為參數),在以為極點, 軸正半軸為極軸的極坐標系中,曲線,曲線.

(1)求曲線的交點的直角坐標;

(2)設點, 分別為曲線上的動點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱臺中, , , ,平面平面,

(1)求證: 平面;

(2)點上一點,二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面為菱形, , , .

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據某市地產數據研究的數據顯示,2016年該市新建住宅銷售均價走勢如下圖所示,為抑制房價過快上漲,政府從8月采取宏觀調控措施,10月份開始房價得到很好的抑制.

(1)地產數據研究院發現,3月至7月的各月均價(萬元/平方米)與月份之間具有較強的線性相關關系,試建立關于的回歸方程(系數精確到0.01);政府若不調控,依此相關關系預測第12月份該市新建住宅銷售均價;

(2)地產數據研究院在2016年的12個月份中,隨機抽取三個月的數據作樣本分析,若關注所抽三個月份的所屬季度,記不同季度的個數為,求的分布列和數學期望.

參考數據: , , ;

回歸方程中斜率和截距的最小二乘法估計公式分別為:

, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市為了宣傳環保知識,舉辦了一次“環保知識知多少”的問卷調查活動(一

人答一份).現從回收的年齡在20~60歲的問卷中隨機抽取了100份,統計結果如下面的圖表所示.

年齡

分組

抽取份數

答對全卷

的人數

答對全卷的人數

占本組的概率

[20,30)

40

28

0.7

[30,40)

27

0.9

[40,50)

10

4

[50,60]

20

0.1

(1)分別求出, , , 的值;

(2)從年齡在答對全卷的人中隨機抽取2人授予“環保之星”,求年齡在的人中至少有1人被授予“環保之星”的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视