【題目】某醫藥研究所開發的一種新藥,如果成年人按規定的劑量服用,據監測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.
(1)寫出第一次服藥后,y與t之間的函數關系式y=f(t);
(2)據進一步測定:每毫升血液中含藥量不少于0.25微克時,治療有效.求服藥一次后治療有效的時間是多長?
【答案】(1) ; (2)服藥一次后治療有效的時間是5-
=
小時.
【解析】
(1)由函數圖象的奧這是一個分段函數,第一段為正比例函數的一段,第二段是指數函數的一段,由于兩端函數均過點,代入點
的坐標,求出參數的值,即可得到函數的解析式;
(2)由(1)的結論將函數值代入函數的解析式,構造不等式,求出每毫升血液中函數不少于
微克的起始時刻和結束時刻,即可得到結論.
(1)由題意,根據給定的函數的圖象,可設函數的解析式為,
又由函數的圖象經過點,
則當時,
,解得
,
又由時,
,解得
,
所以函數的解析式為.
(2)由題意,令,即當
時,
,解得
,
當時,
,解得
,
綜上所述,可得實數的取值范圍是
,
所以服藥一次后治療有效的時間是小時.
科目:高中數學 來源: 題型:
【題目】已知點是平行四邊形
所在平面外一點,如果
,
,
.(1)求證:
是平面
的法向量;
(2)求平行四邊形的面積.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)由題意結合空間向量數量積的運算法則計算可得,
.則
,
,結合線面垂直的判斷定理可得
平面
,即
是平面
的法向量.
(2)利用平面向量的坐標計算可得,
,
,則
,
,
.
試題解析:
(1)∵,
.
∴,
,又
,∴
平面
,
∴是平面
的法向量.
(2)∵
,
,
∴,
∴,
故,
.
【題型】解答題
【結束】
19
【題目】(1)求圓心在直線上,且與直線
相切于點
的圓的方程;
(2)求與圓外切于點
且半徑為
的圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了確保神舟飛船發射時的信息安全,信息須加密傳輸,發送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的a,b,c,…,z的26個字母(不論大小寫)依次對應1,2,3,…,26這26個自然數(見下表):
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
通過變換公式:,將明文轉換成密文,如
,即h變換成q;
,即e變換成c.若按上述規定,若將明文譯成的密文是shxc,那么原來的明文是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018河南濮陽市高三一模】已知點在拋物線
上,
是拋物線上異于
的兩點,以
為直徑的圓過點
.
(I)證明:直線過定點;
(II)過點作直線
的垂線,求垂足
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠擬生產甲、乙兩種適銷產品,每件銷售收入分別為3000元,2000元.甲、乙產品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1,2
,加工一件乙設備所需工時分別為2
,1
.A、B兩種設備每月有效使用臺時數分別為400
和500
,分別用
表示計劃每月生產甲,乙產品的件數.
(Ⅰ)用列出滿足生產條件的數學關系式,并畫出相應的平面區域;
(Ⅱ)問分別生產甲、乙兩種產品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程是
(
是參數),圓
的極坐標方程為
.
(Ⅰ)求圓心的直角坐標;
(Ⅱ)由直線上的點向圓
引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數.
(1)已知的解集為
,求實數
的值;
(2)已知,設
、
是關于
的方程
的兩根,且
,求實數
的值;
(3)已知滿足
,且關于
的方程
的兩實數根分別在區間
內,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com