【題目】如圖,在四棱錐中,
平面
,
,四邊形
滿足
且
,點
為
的中點,點
為
邊上的動點,且
.
(1)求證:平面平面
;
(2)是否存在實數,使得二面角
的余弦值為
?若存在,試求出實數
的值;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,點
,
,
,動點
滿足
,點
為線段
的中點,拋物線
:
上點
的縱坐標為
,
.
(1)求動點的軌跡曲線
的標準方程及拋物線
的標準方程;
(2)若拋物線的準線上一點
滿足
,試判斷
是否為定值,若是,求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的左、右焦點分別是
,
,離心率為
,過
且垂直于
軸的直線被橢圓
截得的線段長為1.
(1)求橢圓的方程;
(2)點是橢圓
上除長軸端點外的任一點,連接
,
,設
的角平分線
交
的長軸于點
,求
的取值范圍;
(3)在(2)的條件下,過點作斜率為
的直線
,使得
與橢圓
有且只有一個公共點,設直線
,
的斜率分別為
,
,若
,證明
為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用一根長為分米的鐵絲制作一個長方體框架(由12條棱組成),使得長方體框架的底面長是寬的
倍.在制作時鐵絲恰好全部用完且損耗忽略不計.現設該框架的底面寬是
分米,用
表示該長方體框架所占的空間體積(即長方體的體積).
(1)試求函數的解析式及其定義域;
(2)當該框架的底面寬取何值時,長方體框架所占的空間體積最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,
,
)的圖象如圖所示,令
,則下列關于函數
的說法中正確的是( )
A. 函數圖象的對稱軸方程為
B. 函數的最大值為2
C. 函數的圖象上存在點
,使得在
點處的切線與直線
平行
D. 若函數的兩個不同零點分別為
,
,則
最小值為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com