【題目】若,
為自然數
,則下列不等式:①
;②
;③
,其中一定成立的序號是__________.
【答案】①③.
【解析】
對于①根據不等式,作差并構造函數,利用導數證明函數的單調性即可比較大小;對于不等式②,根據移項變形,構造函數
,通過求
即可判斷函數的單調性,比較大小即可;對于③,構造函數
,利用換底公式,求導即可判斷函數的單調性,進而比較大小即可.
對于①若成立.兩邊同時取對數可得
,化簡得
因為
則,不等式兩邊同時除以
可得
令,
則
當時,
,所以
即在
內單調遞增
所以當時
,即
所以
故①正確
對于②若,化簡可得
令,
則
由可知
在
內單調遞增
而
所以在
內先負后正
因而在
內先遞減,再遞增,所以當
時無法判斷
與
的大小關系.故②錯誤.
對于③,若
令
利用換底公式化簡可得,
則
當時,
所以,即
則在
內單調遞減
所以當時,
即
所以③正確
綜上可知,正確的為①③
故答案為: ①③
科目:高中數學 來源: 題型:
【題目】為緩解日益擁堵的交通狀況,不少城市實施車牌競價策略,以控制車輛數量.某地車牌競價的原則是:①“盲拍”,即所有參與競拍的人都是網絡報價,每個人并不知曉其他人的報價,也不知道參與當期競拍的總人數;②競價時間截止后,系統根據當期車牌配額,按照競價人的出價從高到低分配名額.某人擬參加2018年10月份的車牌競價,他為了預測最低成交價,根據競拍網站的公告,統計了最近5個月參與競拍的人數(見表):
月份 | 2018.04 | 2018.05 | 2018.06 | 2018.07 | 2018.08 |
月份編號t | 1 | 2 | 3 | 4 | 5 |
競拍人數y(萬人) | 0.5 | 0.6 | m | 1.4 | 1.7 |
(1)由收集數據的散點圖發現,可以線性回歸模擬競拍人數y(萬人)與月份編號t之間的相關關系.現用最小二乘法求得y關于t的回歸方程為,請求出表中的m的值并預測2018年9月參與競拍的人數;
(2)某市場調研機構對200位擬參加2018年9月車牌競拍人員的報價價格進行了一個抽樣調查,得到如下一個頻數表:
報價區間(萬元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7] |
頻數 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位競拍人員報價的平均值(同一區間的報價可用該價格區間的中點值代替);
(ii)假設所有參與競拍人員的報價X服從正態分布,且
為(i)中所求的樣本平均數
的估值,
.若2018年9月實際發放車牌數量為3174,請你合理預測(需說明理由)競拍的最低成交價.參考公式及數據:若隨機變量Z服從正態分布
,則:
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現代足球運動是世上開展得最廣泛、影響最大的運動項目,有人稱它為“世界第一運動”.早在2000多年前的春秋戰國時代,就有了一種球類游戲“蹴鞠”,后來經過阿拉伯人傳到歐洲,發展成現代足球.1863年10月26日,英國人在倫敦成立了世界上第一個足球運動組織——英國足球協會,并統一了足球規則.人們稱這一天是現代足球的誕生日.如圖所示,足球表面是由若干黑色正五邊形和白色正六邊形皮圍成的,我們把這些正五邊形和正六邊形都稱為足球的面,任何相鄰兩個面的公共邊叫做足球的棱.已知足球表面中的正六邊形的面為20個,則該足球表面中的正五邊形的面為______個,該足球表面的棱為______條.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過多年的運作,“雙十一”搶購活動已經演變成為整個電商行業的大型集體促銷盛宴.為迎接2014年“雙十一”網購狂歡節,某廠家擬投入適當的廣告費,對網上所售產品進行促銷.經調查測算,該促銷產品在“雙十一”的銷售量p萬件與促銷費用x萬元滿足(其中
,a為正常數).已知生產該產品還需投入成本
萬元(不含促銷費用),產品的銷售價格定為
元/件,假定廠家的生產能力完全能滿足市場的銷售需求.
(1)將該產品的利潤y萬元表示為促銷費用x萬元的函數;
(2)促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知函數.
(1)討論f(x)的單調性,并證明f(x)有且僅有兩個零點;
(2)設x0是f(x)的一個零點,證明曲線y=ln x 在點A(x0,ln x0)處的切線也是曲線的切線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)若,求曲線
與
的交點坐標;
(2)過曲線上任一點
作與
夾角為30°的直線,交
于點
,且
的最大值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 已知函數f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018河南豫南九校高三下學期第一次聯考】設函數.
(I)當時,
恒成立,求
的范圍;
(II)若在
處的切線為
,且方程
恰有兩解,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】秦九韶是我國南宋時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入,
的值分別為5,2,則輸出
的值為( )
A.64B.68C.72D.133
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com