【題目】已知函數f(x)=(x2+2x﹣3)ex;
(1)求f(x)在x=0處的切線;
(2)求f(x)的單調區間.
科目:高中數學 來源: 題型:
【題目】已知函數(
為常數)的圖像與
軸交于點
,曲線
在點
處的切線斜率為
.
(1)求的值及函數
的極值;
(2)證明:當時,
;
(3)證明:對任意給定的正數,總存在
,使得當
時,恒有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費
元;重量超過
的包裹,除
收費
元之外,超過
的部分,每超出
(不足
,按
計算)需再收
元.該公司將最近承攬的
件包裹的重量統計如下:
包裹重量(單位: | |||||
包裹件數 |
公司對近天,每天攬件數量統計如下表:
包裹件數范圍 | |||||
包裹件數 (近似處理) | |||||
天數 |
以上數據已做近似處理,并將頻率視為概率.
(1)計算該公司未來天內恰有
天攬件數在
之間的概率;
(2)(i)估計該公司對每件包裹收取的快遞費的平均值;
(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過
件,工資
元.公司正在考慮是否將前臺工作人員裁減
人,試計算裁員前后公司每日利潤的數學期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型企業生產的某批產品細分為個等級,為了了解這批產品的等級分布情況,從倉庫存放的
件產品中隨機抽取
件進行檢測、分類和統計,并依據以下規則對產品進行打分:
級或
級產品打
分;
級或
級產品打
分;
級、
級、
級或
級產品打
分;其余產品打
分.現在有如下檢測統計表:
等級 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
頻數 | 10 | 90 | 100 | 200 | 200 | 100 | 100 | 100 | 70 | 30 |
規定:打分不低于分的為優良級.
(1)①試估計該企業庫存的件產品為優良級的概率;
②請估計該企業庫存的件產品的平均得分.
(2)從該企業庫存的件產品中隨機抽取
件,請估計這
件產品的打分之和為
分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生物探測器在水中逆流行進時,所消耗的能量為E=cvnT,其中v為行進時相對于水的速度,T為行進時的時間(單位:h),c為常數,n為能量次級數,如果水的速度為4km/h,該生物探測器在水中逆流行進200km.
(1)求T關于v的函數關系式;
(2)①當能量次級數為2時,求探測器消耗的最少能量;
②當能量次級數為3時,試確定v的大小,使該探測器消耗的能量最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某工廠生產的某種產品中抽取1000件,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:
(1)求這1000件產品質量指標值的樣本平均數和樣本方差
(同一組數據用該區間的中點值作代表)
(2)由頻率分布直方圖可以認為,這種產品的質量指標值服從正態分布
,其中以
近似為樣本平均數
,
近似為樣本方差
.
(。├迷撜龖B分布,求;
(ⅱ)某用戶從該工廠購買了100件這種產品,記表示這100件產品中質量指標值為于區間(127.6,140)的產品件數,利用(ⅰ)的結果,求
.
附:.若
,則
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準:用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了100位居民某年的月均用水量(單位:噸),制作了頻率分布直方圖,
(Ⅰ)用該樣本估計總體:
(1)估計該市居民月均用水量的平均數;
(2)如果希望86%的居民每月的用水量不超出標準,則月均用水量a的最低標準定為多少噸?
(Ⅱ)若將頻率視為概率,現從該市某大型生活社區隨機調查3位居民的月均用水量,其中月均用水量不超過2.5噸的人數為X,求X的分布列和均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數學平均分數和優秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數學期末考試成績.
(1)現從甲班數學成績不低于80分的同學中隨機抽取兩名同學,求成績為87分的同學至少有一名被抽中的概率;
(2)學校規定:成績不低于75分的為優秀.請填寫下面的2×2列聯表,并判斷有多大把握認為“成績優秀與教學方式有關”.
甲班 | 乙班 | 合計 | |
優秀 | |||
不優秀 | |||
合計 |
參考公式:,其中
參考數據:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com