【題目】隨著經濟全球化、信息化的發展,企業之間的競爭從資源的爭奪轉向人才的競爭.吸引、留住培養和用好人才成為人力資源管理的戰略目標和緊迫任務.在此背景下,某信息網站在15個城市中對剛畢業的大學生的月平均收入薪資和月平均期望薪資做了調查,數據如圖所示.
(1)若某大學畢業生從這15座城市中隨機選擇一座城市就業,求該生選中月平均收人薪資高于8000元的城市的概率;
(2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機選擇2座城市,求這2座城市的月平均期望薪資都高于8000元或都低于8000元的概率.
【答案】(1)(2)
【解析】
(1)記事件為該生選中月平均收入薪資高于8000元的城市,利用古典概型可得概率
;
(2)記2座城市的月平均期望薪資都高于8000元或都低于8000元為事件,利用古典概型可得概率
.
(1)設該生選中月平均收入薪資高于8000元的城市為事件,
15座城市中月平均收入薪資高于8000元的有7個,
所以.
(2)月平均收入薪資和月平均期望薪資之差高于1000元的城市有6個,
其中月平均期望薪資高于8000元的有3個,記為,
,
;
月平均期望薪資低于8000元的有3個,記為,
,
,
選取兩座城市所有的可能為:,
,
,
,
,
,
,
,
,
,
,
,
,
,共15種,
設2座城市的月平均期望薪資都高于8000元或都低于8000元為事件,
所以.
科目:高中數學 來源: 題型:
【題目】已知曲線E的極坐標方程為4(ρ2-4)sin2θ=(16-ρ2)cos2θ,以極軸為x軸的非負半軸,極點O為坐標原點,建立平面直角坐標系.
(1)寫出曲線E的直角坐標方程;
(2)若點P為曲線E上動點,點M為線段OP的中點,直線l的參數方程為(t為參數),求點M到直線l的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某蔬果經銷商銷售某種蔬果,售價為每公斤25元,成本為每公斤15元.銷售宗旨是當天進貨當天銷售.如果當天賣不出去,未售出的全部降價以每公斤10元處理完.根據以往的銷售情況,得到如圖所示的頻率分布直方圖:
(1)根據頻率分布直方圖計算該種蔬果日需求量的平均數(同一組中的數據用該組區間中點值代表);
(2)該經銷商某天購進了250公斤這種蔬果,假設當天的需求量為公斤
,利潤為
元.求
關于
的函數關系式,并結合頻率分布直方圖估計利潤
不小于1750元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場從2018年1月份起的前這個月,顧客對某商品的需求總量,(單位:件)與x的關系近似地滿足
(其中
,且
),該商品第x月的進貨單價
(單位:元)與x的近似關系是
.
(1)寫出2018年第x月的需求量(單位:件)與x的函數關系式;
(2)該商品每件的售價為185元,若不計其他費用且每月都能滿足市場需求,試問該商場2018年第幾個月銷售該商品的月利潤最大,最大月利潤為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著經濟全球化、信息化的發展,企業之間的競爭從資源的爭奪轉向人才的競爭.吸引、留住培養和用好人才成為人力資源管理的戰略目標和緊迫任務.在此背景下,某信息網站在15個城市中對剛畢業的大學生的月平均收入薪資和月平均期望薪資做了調查,數據如圖所示.
(1)若某大學畢業生從這15座城市中隨機選擇一座城市就業,求該生選中月平均收人薪資高于8000元的城市的概率;
(2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機選擇2座城市,求這2座城市的月平均期望薪資都高于8000元或都低于8000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列各項均為正數,Sn是數列
的前n項的和,對任意的
,都有
.數列
各項都是正整數,
,且數列
是等比數列.
(1) 證明:數列是等差數列;
(2) 求數列的通項公式
;
(3)求滿足的最小正整數n.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(
為參數)曲線C2的參數方程為
(
,
為參數)在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=
與C1,C2各有一個交點.當
=0時,這兩個交點間的距離為2,當
=
時,這兩個交點重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值;
(2)設當=
時,l與C1,C2的交點分別為A1,B1,當
=-
時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直角三角形所在的平面與半圓弧
所在平面相交于
,
,
,
分別為
,
的中點,
是
上異于
,
的點,
.
(1)證明:平面平面
;
(2)若點為半圓弧
上的一個三等分點(靠近點
)求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
設函數f(x)=alnx﹣bx2(x>0).
(1)若函數f(x)在x=1處于直線相切,求函數f(x)在
上的最大值;
(2)當b=0時,若不等式f(x)≥m+x對所有的a∈[1,],x∈[1,e2]都成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com