【題目】函數f(x)的定義域為D,若滿足①f(x)在D內是單調函數,②存在[a,b]D,使f(x)在[a,b]上的值域為[a,b],那么y=f(x)叫做閉函數,現有f(x)= +k是閉函數,那么k的取值范圍是
【答案】(﹣ ,a]
【解析】解:函數f(x)= +k 的定義域為[﹣2,+∞),且在定義域內是增函數,故滿足①,
又f(x)在[a,b]上的值域為[a,b],∴f(a)=a,f(b)=b,
∴ +k=a,且
+k=b,∴a+2=(a﹣k)2,且 b+2=(b﹣k)2,且k≤a,k≤b.
即 ,故 a和 b 是方程 x2﹣(2k+1)x+k2﹣2=0在[﹣2,+∞)上的兩個根.
令 g(x)=x2﹣(2k+1)x+k2﹣2,
則有 ,解得 a≥k>﹣
,那么k的取值范圍是(﹣
,a],
所以答案是:(﹣ ,a].
【考點精析】解答此題的關鍵在于理解函數的值域的相關知識,掌握求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺担@個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的,以及對函數單調性的判斷方法的理解,了解單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,則函數g(x)=f(x)﹣f′(x)的零點所在的區間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0),過其焦點作斜率為1的直線l交拋物線C于M、N兩點,且|MN|=16. (Ⅰ)求拋物線C的方程;
(Ⅱ)已知動圓P的圓心在拋物線C上,且過定點D(0,4),若動圓P與x軸交于A、B兩點,且|DA|<|DB|,求 的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=( +
)x3(a>0且a≠1).
(1)求函數f(x)的定義域;
(2)討論函數f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的方程x2+2mx+2m+1=0(m∈R).
(1)若方程有兩實根,其中一根在區間(﹣1,1)內,另一根在區間(1,2)內,求m的取值范圍;
(2)若方程兩實根均在區間(﹣1,2)內,求m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com