【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛生防疫工作的相關要求,決定在全公司范圍內舉行一次乙肝普查.為此需要抽驗960人的血樣進行化驗,由于人數較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗960次.方案②:按個人一組進行隨機分組,把從每組
個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這
個人的血就只需檢驗一次(這時認為每個人的血化驗
次);否則,若呈陽性,則需對這
個人的血樣再分別進行一次化驗.這樣,該組
個人的血總共需要化驗
次.假設此次普查中每個人的血樣化驗呈陽性的概率為
,且這些人之間的試驗反應相互獨立.
(1)設方案②中,某組個人中每個人的血化驗次數為
,求
的分布列;
(2)設.試比較方案②中,
分別取2,3,4時,各需化驗的平均總次數;并指出在這三種分組情況下,相比方案①,化驗次數最多可以平均減少多少次?(最后結果四舍五入保留整數).
【答案】(1)分布列見解析;(2)見解析.
【解析】
(1)易得可能的取值為
,再求分布列即可.
(2)根據(1)中的分布列,分別求得時的數學期望,再分析三種情況下需要化驗的總次數,從而得到最多可以減少的次數即可.
(1)設每個人的血呈陰性反應的概率為,則
.
所以個人的血混合后呈陰性反應的概率為
,呈陽性反應的概率為
.
依題意可知所以X的分布列為:
(2)方案②中.
結合(1)知每個人的平均化驗次數為:
.
所以當時,
,此時960人需要化驗的總次數為662次,
時,
,此時960人需要化驗的總次數為580次,
時,
,此時960人需要化驗的次數總為570次,
即時化驗次數最多,
時次數居中,
時化驗次數最少.
而采用方案①則需化驗960次,
故在這三種分組情況下,相比方案①,當時化驗次數最多可以平均減少960-570=390次.
科目:高中數學 來源: 題型:
【題目】如圖,矩形中,
為
的中點,將
沿直線
翻折成
,連結
,
為
的中點,則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得
B.翻折過程中,的長是定值
C.若,則
D.若,當三棱錐
的體積最大時,三棱錐
的外接球的表面積是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫院治療白血病有甲、乙兩套方案,現就70名患者治療后復發的情況進行了統計,得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數之比為.
(1)補充完整列聯表中的數據,并判斷是否有
把握認為甲乙兩套治療方案對患者白血病復發有影響;
復發 | 未復發 | 總計 | |
甲方案 | |||
乙方案 | 2 | ||
總計 | 70 |
(2)為改進“甲方案”,按分層抽樣組成了由5名患者構成的樣本,求隨機抽取2名患者恰好是復發患者和未復發患者各1名的概率.
附:
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 |
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某濕地公園的鳥瞰圖是一個直角梯形,其中:,
,
,
長1千米,
長
千米,公園內有一個形狀是扇形的天然湖泊
,扇形
以
長為半徑,弧
為湖岸,其余部分為灘地,B,D點是公園的進出口.公園管理方計劃在進出口之間建造一條觀光步行道:線段
線段
弧
,其中Q在線段
上(異于線段端點),
與弧
相切于P點(異于弧端點]根據市場行情
,
段的建造費用是每千米10萬元,湖岸段弧
的建造費用是每千米
萬元(步行道的寬度不計),設
為
弧度觀光步行道的建造費用為
萬元.
(1)求步行道的建造費用關于
的函數關系式,并求其走義域;
(2)當為何值時,步行道的建造費用最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
)的左、右焦點分別為
,
且橢圓上存在一點P,滿足.
,
(1)求橢圓C的標準方程;
(2)已知A,B分別是橢圓C的左、右頂點,過的直線交橢圓C于M,N兩點,記直線
,
的交點為T,是否存在一條定直線l,使點T恒在直線l上?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com