【題目】在創建“全國文明城市”過程中,銀川市“創城辦”為了調查市民對創城工作的了解情況,進行了一次創城知識問卷調查(一位市民只能參加一次)通過隨機抽樣,得到參加問卷調查的100人的得分統計結果如表所示:
組別 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數 | 2 | 13 | 21 | 25 | 24 | 11 | 4 |
(1)由頻數分布表可以大致認為,此次問卷調查的得分ZN(μ,198),μ近似為這100人得分的平均值(同一組中的數據用該組區間的左端點值作代表),
①求μ的值;
②利用該正態分布,求;
(2)在(1)的條件下,“創城辦”為此次參加問卷調查的市民制定如下獎勵方案:
①得分不低于的可以獲贈2次隨機話費,得分低于
的可以獲贈1次隨機話費;
②每次獲贈的隨機話費和對應的概率為:
贈送話費的金額(單元:元) | 20 | 50 |
概率 |
現有市民甲參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求
的分布列與數學期望.
參考數據與公式:.若
,則
,
,
.
科目:高中數學 來源: 題型:
【題目】如圖,河的兩岸分別有生活小區和
,其中
,
三點共線,
與
的延長線交于點
,測得
,
,
,
,
,若以
所在直線分別為
軸建立平面直角坐標系
則河岸
可看成是曲線
(其中
是常數)的一部分,河岸
可看成是直線
(其中
為常數)的一部分.
(1)求的值.
(2)現準備建一座橋,其中
分別在
上,且
,
的橫坐標為
.寫出橋
的長
關于
的函數關系式
,并標明定義域;當
為何值時,
取到最小值?最小值是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長為4,且經過點
.
(1)求橢圓的方程;
(2)直線的斜率為
,且與橢圓相交于
,
兩點(異于點
),過
作
的角平分線交橢圓于另一點
.證明:直線
與坐標軸平行.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
的焦點為
,拋物線
上的點到準線的最小距離為2.
(1)求拋物線的方程;
(2)若過點作互相垂直的兩條直線
,
,
與拋物線
交于
,
兩點,
與拋物線
交于
,
兩點,
,
分別為弦
,
的中點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一種擲骰子走跳棋的游戲:棋盤上標有第0站、第1站、第2站、…、第100站,共101站,設棋子跳到第n站的概率為,一枚棋子開始在第0站,棋手每擲一次骰子,棋子向前跳動一次.若擲出奇數點,棋子向前跳一站;若擲出偶數點,棋子向前跳兩站,直到棋子跳到第99站(獲勝)或第100站(失敗)時,游戲結束(骰子是用一種均勻材料做成的立方體形狀的游戲玩具,它的六個面分別標有點數1,2,3,4,5,6).
(1)求,
,
,并根據棋子跳到第n站的情況,試用
和
表示
;
(2)求證:為等比數列;
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解用戶對其產品的滿意度,從甲、乙兩地區分別隨機調查了100個用戶,根據用戶對產品的滿意度評分,分別得到甲地區和乙地區用戶滿意度評分的頻率分布直方圖.
若甲地區和乙地區用戶滿意度評分的中位數分別為m1,m2;平均數分別為s1,s2,則下面正確的是( )
A. m1>m2,s1>s2B. m1>m2,s1<s2
C. m1<m2,s1<s2D. m1<m2,s1>s2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com