精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的右焦點為且過點橢圓C軸的交點為A、B(點A位于點B的上方),直線與橢圓C交于不同的兩點MN(點M位于點N的上方).

(1)求橢圓C的方程;

(2)求△OMN面積的最大值;

(3)求證:直線AN和直線BM交點的縱坐標為常值.

【答案】123,證明見解析

【解析】

1)由題可知,橢圓過點所以將點代入可得,再結合橢圓的關系式即可求解

2)聯立橢圓和直線的方程,表示出韋達定理,再表示出弦長公式,用點到直線距離公式表示出點到直線距離,進一步化簡求值即可

3)結合(2)中的韋達定理,表示出直線與直線方程,再聯立求解即可

1)由題可知,又橢圓過點所以將點代入橢圓的標準方程可得,結合橢圓的關系式,可得,所以橢圓的標準方程為

2)設,聯立方程組,

化簡得,由,

解得,由韋達定理,得,

,點到直線距離,則

,,,則

可代換為

時,取到最大值,

3)借用(2)中的韋達定理,直線的方程

直線的方程②,聯立①②,

直線與直線的交點在定直線上.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,點在以為直徑的圓上,垂直與圓所在平面,的垂心.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年,教育部發文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學期的高一年級學生開始實行.為了適應新高考改革,某校組織了一次新高考質量測評,在成績統計分析中,高二某班的數學成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據此解答如下問題:

1)求該班數學成績在的頻率及全班人數;

2)根據頻率分布直方圖估計該班這次測評的數學平均分;

3)若規定分及其以上為優秀,現從該班分數在分及其以上的試卷中任取份分析學生得分情況,求在抽取的份試卷中至少有份優秀的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

1)求直線的普通方程及曲線的直角坐標方程;

2)設直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且有極大值.

(Ⅰ)求的解析式;

(Ⅱ)若的導函數,不等式為正整數)對任意正實數恒成立,求的最大值.(注:).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據統計,某蔬菜基地西紅柿畝產量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應數據的散點圖,如圖所示.

(1)依據數據的散點圖可以看出,可用線性回歸模型擬合的關系,請計算相關系數并加以說明(若,則線性相關程度很高,可用線性回歸模型擬合);

(2)求關于的回歸方程,并預測液體肥料每畝使用量為12千克時,西紅柿畝產量的增加量約為多少?

附:相關系數公式,參考數據:,.

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數上有最大值和最小值,設為自然對數的底數).

(1)求的值;

(2)若不等式上有解,求實數的取值范圍;

(3)若方程有三個不同的實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在上的奇函數有最小正周期4,且時,

(1)判斷并證明上的單調性,并求上的解析式;

(2)當為何值時,關于的方程上有實數解?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線過點(為非零常數)軸不垂直的直線C交于兩點.

(1)求證:(是坐標原點);

(2)AB的垂直平分線與軸交于,求實數的取值范圍;

(3)A關于軸的對稱點為D,求證:直線BD過定點,并求出定點的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视