【題目】已知拋物線過點
(
為非零常數)與
軸不垂直的直線
與C交于
兩點.
(1)求證:(
是坐標原點);
(2)AB的垂直平分線與軸交于
,求實數
的取值范圍;
(3)設A關于軸的對稱點為D,求證:直線BD過定點,并求出定點的坐標.
【答案】(1)見解析;(2) ;(3) 過定點,且定點為
.
【解析】
(1)因為,所以聯立直線和曲線方程,得到
的表達式,代入計算即可證明結果. (2)首先根據第一問的計算過程求出
的中點坐標
,從而設出AB的垂直平分線:
,令
,求出
的表達式
,根據第一問中
求出
的關系,代入求解
的范圍即可. (3)首先根據對稱關系設出D點的坐標,然后利用兩點式寫出直線BD的方程
,根據第一問的計算過程化簡直線方程,從而求出直線所過的定點.
(1)設過點的直線
的方程為
,聯立曲線方程得:
所以.
(2) 設兩點的中點坐標為
,則
,
.則
,即AB的垂直平分線為
,
令,解得
.又
,即
,所以
.
所以的取值范圍為
.
(3) A關于軸的對稱點為D,則
,則直線BD:
,整理得:
.
又=
.
所以直線BD為:=
,所以恒過定點
.得證.
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
且過點
橢圓C與
軸的交點為A、B(點A位于點B的上方),直線
與橢圓C交于不同的兩點M、N(點M位于點N的上方).
(1)求橢圓C的方程;
(2)求△OMN面積的最大值;
(3)求證:直線AN和直線BM交點的縱坐標為常值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,
.
(1)若函數f(x)在處有極值,求函數f(x)的最大值;
(2)是否存在實數b,使得關于x的不等式在
上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率為
,圓
與
正半軸交于點
,圓
在點
處的切線被橢圓
截得的弦長為
.
(1)求橢圓的方程;
(2)設圓上任意一點
處的切線交橢圓
于點
、
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列各項均非零,且存在常數,對任意
,
恒成立,則成這樣的數列為“類等比數列”,例如等比數列一定為類等比數列,則:
(1)各項均非零的等差數列是否可能為“類等比數列”?若可能,請舉例;若不能,說明理由;
(2)已知數列為“類等比數列”,且
,是否存在常數
,使得
恒成立?
(3)已知數列為“類等比數列”,且
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某居民區隨機抽取10個家庭,獲得第個家庭的月收入
(單位:千元)與月儲蓄
(單位:千元)的數據資料,算得
,
,
,
.
(1)求家庭的月儲蓄對月收入
的線性回歸方程
;
(2)若該居民區某家庭月收入為7千元,預測該家庭的月儲蓄.
(附:線性回歸方程中,
,其中
,
為樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+sin x,x∈(-1,1),則滿足f(a2-1)+f(a-1)>0的a的取值范圍是( )
A. (0,2)B. (1,)C. (1,2)D. (0,
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com