【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2acosB=2c﹣b.
(1)求∠A的大。
(2)若△ABC的外接圓的半徑為,面積為
,求△ABC的周長.
【答案】(1)A.(2)6+2
.
【解析】
(1)先由正弦定理化簡求解∠A;(2)通過外接圓半徑和∠A大小通過正弦定理求得的值,再用∠A余弦定理和面積聯立求解b+c,即可求得△ABC的周長.
(1)∵2acosB=2c﹣b,
∴由正弦定理可得:2sinAcosB=2sinC﹣sinB,可得:2sinAcosB=2sinAcosB+2sinBcosA﹣sinB,
∴2sinBcosA=sinB,
∵sinB≠0,
∴cosA,
又0<A<π,
∴A.
(2)∵A,
∴由正弦定理可得:a=2RsinA=6,
∵SbcsinA
4
,解得bc=16,
∴由余弦定理a2=b2+c2﹣2bccosA,可得:36=b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣48,
∴解得b+c=2,
∴△ABC的周長a+b+c=6+2.
科目:高中數學 來源: 題型:
【題目】某生產旅游紀念品的工廠,擬在2017年度進行系列促銷活動.經市場調查和測算,該紀念品的年銷售量x(單位:萬件)與年促銷費用t(單位:萬元)之間滿足3-x與t+1成反比例.若不搞促銷活動,紀念品的年銷售量只有1萬件.已知工廠2017年生產紀念品的固定投資為3萬元,每生產1萬件紀念品另外需要投資32萬元.當工廠把每件紀念品的售價定為“年平均每件生產成本的1.5倍”與“年平均每件所占促銷費的一半”之和時,則當年的產量和銷量相等.(利潤=收入-生產成本-促銷費用)
(1)請把該工廠2017年的年利潤y(單位:萬元)表示成促銷費t(單位:萬元)的函數;
(2)試問:當2017年的促銷費投入多少萬元時,該工廠的年利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地計劃在一處海灘建造一個養殖場.
(1)如圖1,射線OA,OB為海岸線,,現用長度為1千米的圍網PQ依托海岸線圍成一個
的養殖場,問如何選取點P,Q,才能使養殖場
的面積最大,并求其最大面積.
(2)如圖2,直線l為海岸線,現用長度為1千米的圍網依托海岸線圍成一個養殖場.方案一:圍成三角形OAB(點A,B在直線l上),使三角形OAB面積最大,設其為;方案二:圍成弓形CDE(點D,E在直線l上,C是優弧所在圓的圓心且
),其面積為
;試求出
的最大值和
(均精確到0.01平方千米),并指出哪一種設計方案更好.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
過點
,
為其焦點,過
且不垂直于
軸的直線
交拋物線
于
,
兩點,動點
滿足
的垂心為原點
.
(1)求拋物線的方程;
(2)求證:動點在定直線
上,并求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了鼓勵職員工作熱情,某公司對每位職員一年來的工作業績按月進行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應獎勵.已知職員一年來的工作業績分數的莖葉圖如圖所示:
(1)根據職員的業績莖葉圖求出他這一年的工作業績的中位數和平均數;
(2)若記職員的工作業績的月平均數為
.
①已知該公司還有6位職員的業績在100以上,分別是,
,
,
,
,
,在這6人的業績里隨機抽取2個數據,求恰有1個數據滿足
(其中
)的概率;
②由于職員的業績高,被公司評為年度最佳職員,在公司年會上通過抽獎形式領取獎金.公司準備了9張卡片,其中有1張卡片上標注獎金為6千元,4張卡片的獎金為4千元,另外4張的獎金為2千元.規則是:獲獎職員需要從9張卡片中隨機抽出3張,這3張卡片上的金額數之和就是該職員所得獎金.記職員
獲得的獎金為
(千元),求
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】讀書可以使人保持思想活力,讓人得到智慧啟發,讓人滋養浩然正氣書籍是文化的重要載體,讀書是承繼文化的重要方式某地區為了解學生課余時間的讀書情況,隨機抽取了名學生進行調查,根據調查得到的學生日均課余讀書時間繪制成如圖所示的頻率分布直方圖,將日均課余讀書時間不低于
分鐘的學生稱為“讀書之星”,日均課余讀書時間低于
分鐘的學生稱為“非讀書之星”:已知抽取的樣本中日均課余讀書時間低于
分鐘的有
人
(1)求的值;
(2)根據已知條件完成下面的列聯表,并判斷是否有
以上的把握認為“讀書之星”與性別有關?
非讀書之星 | 讀書之星 | 總計 | |
男 | |||
女 | |||
總計 |
(3)將上述調查所得到的頻率視為概率,現從該地區大量學生中,隨機抽取名學生,每次抽取
名,已知每個人是否被抽到互不影響,記被抽取的“讀書之星”人數為隨機變量
,求
的分布列和期望
附:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯招對初三畢業學生進行體育測試,是激發學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.某地區2019年初中畢業生升學體育考試規定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分為50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到如下頻率分布直方圖,且規定計分規則如下表:
每分鐘跳 繩個數 | |||||
得分 | 16 | 17 | 18 | 19 | 20 |
(Ⅰ)現從樣本的100名學生中,任意選取2人,求兩人得分之和不大于33分的概率;
(Ⅱ)若該校初三年級所有學生的跳繩個數服從正態分布
,用樣本數據的平均值和方差估計總體的期望和方差(結果四舍五入到整數),已知樣本方差
(各組數據用中點值代替).根據往年經驗,該校初三年級學生經過一年的訓練,正式測試時每人每分鐘跳繩個數都有明顯進步,假設明年正式測試時每人每分鐘跳繩個數比初三上學期開始時個數增加10個,利用現所得正態分布模型:
(ⅰ)預估全年級恰好有1000名學生,正式測試時每分鐘跳193個以上的人數.(結果四舍五入到整數)
(ⅱ)若在該地區2020年所有初三畢業生中任意選取3人,記正式測試時每分鐘跳202個以上的人數為,求隨機變量
的分布列和期望.
附:若隨機變量服從正態分布
,
,則
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列滿足
.
①存在可以生成的數列
是常數數列;
②“數列中存在某一項
”是“數列
為有窮數列”的充要條件;
③若為單調遞增數列,則
的取值范圍是
;
④只要,其中
,則
一定存在;
其中正確命題的序號為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com