精英家教網 > 高中數學 > 題目詳情

【題目】針對國家提出的延遲退休方案,某機構進行了網上調查,所有參與調查的人中,持“支持”、“保留”和“不支持”態度的人數如下表所示:

支持

保留

不支持

歲以下

歲以上(含歲)

(1)在所有參與調查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態度的人中抽取了人,求的值;

(2)在持“不支持”態度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.

(3)在接受調查的人中,有人給這項活動打出的分數如下: , , , , , ,把這個人打出的分數看作一個總體,從中任取一個數,求該數與總體平均數之差的絕對值超過概率.

【答案】(1);(2);(3).

【解析】試題分析:(1)比上總人數等于30人比上持“不支持”態度的人數即可得解;

(2)列樹狀圖,用古典概型計算即可;

(3)先計算平均數,再列舉出與總體平均數之差的絕對值超過事件按,作比即可得解.

試題解析:

(1)參與調查的總人數為,其中從持“不支持”態度的人數中抽取了人,所以.

(2)易得,抽取的人中, 歲以下與歲以上人數分別為人(記為, ),人(記為, ),從這人中任意選取人,基本事件為:

其中,至少有人年齡在歲以下的事件有個,所求概率為.

(3)總體的平均數為 ,

那么與總體平均數之差的絕對值超過的數有 , ,所以任取個數與總體平均數之差的絕對值超過的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】執行如圖所示的程序框圖,若輸出的結果為,則判斷框內應填入(

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列的前項和為,,則稱緊密數列”.

1)已知數列緊密數列,其前5項依次為,求的取值范圍;

2)若數列的前項和為,判斷是否是緊密數列,并說明理由;

3)設是公比為的等比數列,都是緊密數列,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是半圓的直徑,平面與半圓所在的平面垂直,, ,是半圓上不同于,的點,四邊形是矩形.

(Ⅰ)若,證明:平面;

(Ⅱ)若,求三棱錐體積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知圓的圓心在直線上,且過點,與直線相切.

)求圓的方程

)設直線與圓相交于,兩點.求實數的取值范圍.

的條件下,是否存在實數,使得弦的垂直平分線過點,若存在,求出實數的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】αβ是兩個不重合的平面,在下列條件中,可判斷平面α,β平行的是(  )

A. m,n是平面內兩條直線,且,

B. 內不共線的三點到的距離相等

C. ,都垂直于平面

D. mn是兩條異面直線,,,且,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的內角A,BC的對邊分別為a,b,c.且滿足4cos2cos2B+C.

1)求角A

2)若△ABC的面積為,周長為8,求a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國華南沿海地區是臺風登陸頻繁的地區,為統計地形地貌對臺風的不同影響,把華南沿海分成東西兩區,對臺風的強度按風速劃分為:風速不小于30米/秒的稱為強臺風,風速小于30米/秒的稱為風暴,下表是2014年對登陸華南地區的15次臺風在東西兩部的強度統計:

(1)根據上表,計算有沒有99%以上的把握認為臺風強度與東西地域有關;

(2)2017年8月23日,“天鴿”在深圳登陸,造成深圳特大風暴,如圖所示的莖葉圖統計了深圳15塊區域的風速.(十位數為莖,個位數為葉)

①任取2個區域進行統計,求取到2個區域風速不都小于25的概率;

②任取3個區域進行統計, 表示“風速達到強臺風級別的區域個數”,求的分布列及數學期望.

附: ,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數定義域為R,對于任意R恒有.

(1)若,求的值;

(2)若時,,求函數,的解析式及值域;

(3)若時,,求在區間,上的最大值與最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视