【題目】設,
,
為兩兩不重合的平面,
,
,
為兩兩不重合的直線,給出下列四個命題:
①若,
,則
;
②若,
,
,
,則
;
③若,
,則
;
④若,
,
,
,則
.
其中真命題是( )
A.①③B.②④C.③④D.①②
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(Ⅰ)若曲線與曲線
在公共點處有共同的切線,求實數
的值;
(Ⅱ)在(Ⅰ)的條件下,試問函數是否有零點?如果有,求出該零點;若沒有,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車進駐城市,綠色出行引領時尚.某市有統計數據顯示,2020年該市共享單車用戶年齡等級分布如圖1所示,一周內市民使用單車的頻率分布扇形圖如圖2所示.若將共享單車用戶按照年齡分為“年輕人”(20歲-39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內使用的次數為6次或6次以上的稱為“經常使用單車用戶”,使用次數為5次或不足5次的稱為“不常使用單車用戶”.已知在“經常使用單車用戶”中有是“年輕人”.
(1)現對該市市民進行“經常使用共享單車與年齡關系”的調查,采用隨機抽樣的方法,抽取一個容量為200的樣本,請你根據圖表中的數據,補全下列列聯表,并根據列聯表的獨立性檢驗,判斷是否有85%的把握認為經常使用共享單車與年齡有關?
年輕人 | 非年輕人 | 合計 | |
經常使用單車用戶 | 120 | ||
不常使用單車用戶 | 80 | ||
合計 | 160 | 40 | 200 |
使用共享單車情況與年齡列聯表
(2)將(1)中頻率視為概率,若從該市市民中隨機任取3人,設其中經常使用共享單車的“非年輕人”人數為隨機變量,求
的分布列與期望.
參考數據:獨立性檢驗界值表
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著年北京冬奧會臨近,中國冰雪產業快速發展,冰雪運動人數快速上升,冰雪運動市場需求得到釋放,將引領戶外用品行業市場增長.下面是
年至
年中國雪場滑雪人次(萬人次)與同比增長率的統計圖,則下面結論中不正確的是( )
A.年至
年,中國雪場滑雪人次逐年增加
B.年至
年,中國雪場滑雪人次和同比增長率均逐年增加
C.年與
年相比,中國雪場滑雪人次的同比增長率近似相等,所以同比增長人數也近似相等
D.年與
年相比,中國雪場滑雪人次增長率約為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費
和年銷售量
(
)數據作了初步處理,得到下面的散點圖及一些統計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1.469 | 108.8 |
表中,
(1)根據散點圖判斷,與
哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?給出判斷即可,不必說明理由
(2)根據(1)的判斷結果及表中數據,建立y關于x的回歸方程;
(3)已知這種產品的年利潤z與x、y的關系為根據(2)的結果回答下列問題:
①年宣傳費時,年銷售量及年利潤的預報值是多少?
②年宣傳費x為何值時,年利潤的預報值最大?
附:對于一組數據,其回歸線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程為
,以極點
為原點,極軸所在直線為
軸建立直角坐標系,過點
作傾斜角為
(
)的直線
交曲線
于
、
兩點.
(1)求曲線的直角坐標方程,并寫出直線
的參數方程;
(2)過點的另一條直線
與
垂直,且與曲線
交于
,
兩點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規定
為考核優秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:
(Ⅰ)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核優秀的概率;
(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優秀的概率;
(Ⅲ)記表示學生的考核成績在區間
的概率,根據以往培訓數據,規定當
時培訓有效.請根據圖中數據,判斷此次中學生冰雪培訓活動是否有效,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①,在平面五邊形中,
是梯形,
,
,
,
,
是等邊三角形.現將
沿
折起,連接
、
得如圖②的幾何體.
(1)若點是
的中點,求證:
平面
;
(2)若,在棱
上是否存在點
,使得二面角
的余弦值為
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,
)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com