如圖,現要在邊長為的正方形
內建一個交通“環島”.正方形的四個頂點為圓心在四個角分別建半徑為
(
不小于
)的扇形花壇,以正方形的中心為圓心建一個半徑為
的圓形草地.為了保證道路暢通,島口寬不小于
,繞島行駛的路寬均不小于
.
(1)求的取值范圍;(運算中
取
)
(2)若中間草地的造價為元
,四個花壇的造價為
元
,其余區域的造價為
元
,當
取何值時,可使“環島”的整體造價最低?
(1) ,(2)
.
解析試題分析:(1)解決應用題問題首先要解決閱讀問題,具體說就是要會用數學式子正確表示數量關系,本題根據半徑、島口寬、路寬限制條件列方程組,即可得的取值范圍;其難點在路寬最小值的確定,觀察圖形易知路寬最小值應在正方形對角線連線上取得,(2)本題解題思路清晰,就是根據草地、花壇、其余區域的造價列函數關系式,再由導數求最值.難點在所列函數解析式是四次,其導數為三次,在判定區間導數符號時需細心確定,要解決這一難點,需充分利用因式分解簡化式子結構.
試題解析:(1)由題意得, 4分
解得即
. 7分
(2)記“環島”的整體造價為元,則由題意得
, 10分
令,則
,
由,解得
或
, 12分
列表如下:
所以當9 (9,10) 10 (10,15) 15 - 0 + 0 ↘ 極小值 ↗ ,
取最小值.
答:當時,可使“環島”的整體造價最低. 14分
考點:利用導數求最值,解不等式.
科目:高中數學 來源: 題型:解答題
已知函數,
(
為常數),直線
與函數
、
的圖象都相切,且
與函數
圖象的切點的橫坐標為
.
(1)求直線的方程及
的值;
(2)若 [注:
是
的導函數],求函數
的單調遞增區間;
(3)當時,試討論方程
的解的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數.
(Ⅰ)若在x=
處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數的單調區間;
(Ⅲ)若函數的圖象與x軸交于A,B兩點,線段AB中點的橫坐標為
,證明
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知a,b為常數,a¹0,函數.
(1)若a=2,b=1,求在(0,+∞)內的極值;
(2)①若a>0,b>0,求證:在區間[1,2]上是增函數;
②若,
,且
在區間[1,2]上是增函數,求由所有點
形成的平面區域的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
(Ⅰ)當a=4時,求函數f(x)的單調區間;
(Ⅱ)求函數g(x)在區間上的最小值;
(Ⅲ)若存在,使方程
成立,求實數a的取值范圍(其中e=2.71828是自然對數的底數)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com