【題目】定義:如果一個數列從第2項起,每一項與它前一項的差都大于或等于2,則稱這個數列為“D數列”.
(1)若首項為1的等差數列的每一項均為正整數,且數列
為“D數列”,其前n項和
滿足
(
),求數列
的通項公式;
(2)已知等比數列的每一項均為正整數,且數列
為“D數列”,
,設
(
),試判斷數列
是否為“D數列”,并說明理由.
【答案】(1)(2)是,理由見解析
【解析】
(1) 設的公差為d,則
,由
每一項均為正整數,即
,可求出
.
(2).根據條件有,
,,所以
,在數列
中,
為最小項,由數列
為“D數列”可知,只需
,可求出
,
或
,
,然后再分別
判斷是否恒成立.
(1)設等差數列的公差為d,則
,由
,得
.
由題意得,對
均成立,
當時,上式成立.當
時,
,
又,∴
,∴
∴等差數列的通項公式為
.
(2)設等比數列的公比為q,則
,
∵數列的每一項均為正整數,且
,
∴,且q為整數
∵.
∴在數列中,
為最小項,由數列
為“D數列”可知,只需
.
即,又
,即
.
由數列的每一項均為正整數,可得
,∴
,
或
,
.①
當,
時,
,則
.
令(
),
則
∴.
∴數列為遞增數列,即
.又
.
∴對任意的都有
.
∴數列是“D數列”. ②
當,
時,
,則
.
令(
).
=
∴
∴數列為遞增數列,即
.又
.
∴對任意的都有
,∴數列
是“D數列”.綜上,數列
是“D數列”
科目:高中數學 來源: 題型:
【題目】已知三棱錐的棱長均為6,其內有
個小球,球
與三棱錐
的四個面都相切,球
與三棱錐
的三個面和球
都相切,如此類推,…,球
與三棱錐
的三個面和球
都相切(
,且
),則球
的體積等于__________,球
的表面積等于__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
)的兩焦點與短軸兩端點圍成面積為12的正方形.
(1)求橢圓C的標準方程;
(2)我們稱圓心在橢圓上運動,半徑為的圓是橢圓的“衛星圓”.過原點O作橢圓C的“衛星圓”的兩條切線,分別交橢圓C于A、B兩點,若直線
、
的斜率為
、
,當
時,求此時“衛星圓”的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖(1),函數的圖象與x軸圍成一個封閉區域A(陰影部分),將區域A(陰影部分)沿z軸的正方向上移6個單位,得到一幾何體.現有一個與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區域A(陰影部分)的面積相等,則此柱體的體積為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優惠活動:對首次消費的顧客,按/次收費,并注冊成為會員,對會員逐次消費給予相應優惠,標準如下:
消費次第 | 第 | 第 | 第 | 第 |
|
收費比率 |
該公司注冊的會員中沒有消費超過次的,從注冊的會員中,隨機抽取了100位進行統計,得到統計數據如下:
消費次數 |
|
|
|
|
|
人數 |
假設汽車美容一次,公司成本為元,根據所給數據,解答下列問題:
(1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(2)以事件發生的頻率作為相應事件發生的概率,設該公司為一位會員服務的平均利潤為元,求
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標依次是
,(如圖所示,
坐標以已知條件為準),
表示青蛙從點
到點
所經過的路程.
(1)若點為拋物線
(
)準線上一點,點
均在該拋物線上,并且直線
經過該拋物線的焦點,證明
.
(2)若點要么落在
所表示的曲線上,要么落在
所表示的曲線上,并且
,試寫出
(不需證明);
(3)若點要么落在
所表示的曲線上,要么落在
所表示的曲線上,并且
,求
的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“雙11”促銷活動中,某商場為了吸引顧客,搞好促銷活動,采用“雙色球”定折扣的方式促銷,即:在紅、黃的兩個紙箱中分別裝有大小完全相同的紅、黃球各5個,每種顏色的5個球上標有1,2,3,4,5等5個數字,顧客結賬時,先分別從紅、黃的兩個紙箱中各取一球,按兩個球的數字之和為折扣打折,如,就按3折付款,并規定取球后不再增加商品.按此規定,顧客享有6折及以下折扣的概率是( 。
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com