【題目】若函數在區間
上恰好有一個零點,則
的最小值為______.
【答案】
【解析】
將函數在區間
,
上有一個零點等價于方程
在區間
,
上恰有一個根,也即是函數
和函數
的圖象在區間
上恰好有一個交點,由二次函數得出函數
的值域,令
,再分當
時,當
時,兩種情況下兩函數圖象的交點情況得出
的范圍,根據雙勾函數可求得
的最小值.
依題意,函數在區間
,
上有一個零點等價于方程
在區間
,
上恰有一個根,
函數和函數
的圖象在區間
上恰好有一個交點,
函數關于
對稱,在
上有最小值
,
時,
,
,
函數,令
,
當時,由復合函數單調性知
單調遞減,當
時,
,
所以函數和函數
的圖象在區間
上無交點,
當時,由復合函數單調性知
單調遞增,如圖,
由圖可知,當,
時,函數圖象恰好有1個交點,
此時,解得
,
因為在
上單調遞增,所以
,即
的最小值為
,
故答案為:.
科目:高中數學 來源: 題型:
【題目】2022年北京冬奧運動會即第24屆冬季奧林匹克運動會將在2022年2月4日至2月20日在北京和張家口舉行,某研究機構為了了解大學生對冰壺運動的興趣,隨機從某大學生中抽取了100人進行調查,經統計男生與女生的人數比為,男生中有20人表示對冰壺運動有興趣,女生中有15人對冰壺運動沒有興趣.
(1)完成列聯表,并判斷能否有
把握認為“對冰壺運動是否有興趣與性別有關”?
有興趣 | 沒有興趣 | 合計 | |
男 | 20 | ||
女 | 15 | ||
合計 | 100 |
(2)用分層抽樣的方法從樣本中對冰壺運動有興趣的學生中抽取6人,求抽取的男生和女生分別為多少人?若從這6人中選取兩人作為冰壺運動的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某種新型病毒的傳染能力很強,給人們生產和生活帶來很大的影響,所以創新研發疫苗成了當務之急.為此,某藥企加大了研發投入,市場上這種新型冠狀病毒的疫苗的研發費用
(百萬元)和銷量
(萬盒)的統計數據如下:
研發費用 | 2 | 3 | 6 | 10 | 13 | 14 |
銷量 | 1 | 1 | 2 | 2.5 | 4 | 4.5 |
(1)根據上表中的數據,建立關于
的線性回歸方程
(用分數表示);
(2)根據所求的回歸方程,估計當研發費用為1600萬元時,銷售量為多少?
參考公式:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】遼寧省六校協作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮高中、瓦房店高中、丹東四中)中的某校文科實驗班的名學生期中考試的語文、數學成績都不低于
分,其中語文成績的頻率分布直方圖如圖所示,成績分組區間是:
、
、
、
、
.
(1)根據頻率分布直方圖,估計這名學生語文成績的中位數和平均數;(同一組數據用該區間的中點值作代表;中位數精確到
)
(2)若這名學生語文成績某些分數段的人數
與數學成績相應分數段的人數
之比如下表所示:
分組區間 | ||||
從數學成績在的學生中隨機選取
人,求選出的
人中恰好有
人數學成績在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
為
上位于第一象限的任意一點,過點
的直線
交
于另一點
,交
軸的正半軸于點
.
(1)若當點的橫坐標為
,且
為等腰三角形,求
的方程;
(2)對于(1)中求出的拋物線,若點
,記點
關于
軸的對稱點為
交
軸于點
,且
,求證:點
的坐標為
,并求點
到直線
的距離
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司給年齡在歲的民眾提供某種疾病的一年期醫療保險,現從
名參保人員中隨機抽取
名作為樣本進行分析,按年齡段
分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示. 據統計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.
年齡 (單位:歲) | |||||
保費 (單位:元) |
(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數時的最小值
;
(2)經調查,年齡在之間老人每
人中有
人患該項疾病(以此頻率作為概率).該病的治療費為
元,如果參保,保險公司補貼治療費
元.某老人年齡
歲,若購買該項保險(
取
中的
).針對此疾病所支付的費用為
元;若沒有購買該項保險,針對此疾病所支付的費用為
元.試比較
和
的期望值大小,并判斷該老人購買此項保險是否劃算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,已知橢圓的離心率為
,左右焦點分別是
和
,以
為圓心,3為半徑的圓與以
為圓心,1為半徑的圓相交,且交點在橢圓C上.
(1)求橢圓C的方程.
(2)設橢圓,P為橢圓C上任意一點,過點P的直線
交橢圓E于A、B兩點,射線OP交橢圓E于點Q.
①判斷是否為定值?若是定值求出該定值,若不是定值說明理由.
②求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(
為參數),直線
(
為參數,
),直線
與曲線
相切于點
,以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程及點
的極坐標;
(2)曲線的直角坐標方程為
,直線
的極坐標方程為
,直線
與曲線
交于在
,
兩點,記
的面積為
,
的面積為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com