【題目】已知函數f(x)=a4x﹣a2x+1+1﹣b(a>0)在區間[1,2]上有最大值9和最小值1
(1)求a,b的值;
(2)若不等式f(x)﹣k4x≥0在x∈[﹣1,1]上有解,求實數k的取值范圍.
【答案】
(1)解:令t=2x∈[2,4],
則y=at2﹣2at+1﹣b,t∈[2,4],
對稱軸t=1,a>0,
∴t=2時,ymin=4a﹣4a+1﹣b=1,
t=4時,ymax=16a﹣8a+1﹣b=9,
解得a=1,b=0,
(2)解:4x﹣22x+1﹣k4x≥0在x∈[﹣1,1]上有解
設2x=t,
∵x∈[﹣1,1],
∴t∈[ ,2],
∵f(2x)﹣k.2x≥0在x∈[﹣1,1]有解,
∴t2﹣2t+1﹣kt2≥0在t∈[ ,2]有解,
∴k≤ =1﹣
+
,
再令 =m,則m∈[
,2],
∴k≤m2﹣2m+1=(m﹣1)2
令h(m)=m2﹣2m+1,
∴h(m)max=h(2)=1,
∴k≤1,
故實數k的取值范圍(﹣∞,1]
【解析】(1)令t=2x∈[2,4],依題意知,y=at2﹣2at+1﹣b,t∈[2,4],由即可求得a、b的值.(2)設2x=t,k≤ =1﹣
+
,求出函數1﹣
+
的大值即可
【考點精析】本題主要考查了函數的最值及其幾何意義的相關知識點,需要掌握利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲;利用函數單調性的判斷函數的最大(。┲挡拍苷_解答此題.
科目:高中數學 來源: 題型:
【題目】天氣預報是氣象專家根據預測的氣象資料和專家們的實際經驗,經過分析推斷得到的,在現實的生產生活中有著重要的意義,某快餐企業的營銷部門對數據分析發現,企業經營情況與降雨填上和降雨量的大小有關.
(1)天氣預報所,在今后的三天中,每一天降雨的概率為40%,該營銷部分通過設計模擬實驗的方法研究三天中恰有兩天降雨的概率,利用計算機產生0大9之間取整數值的隨機數,并用表示下雨,其余
個數字表示不下雨,產生了20組隨機數:
求由隨機模擬的方法得到的概率值;
(2)經過數據分析,一天內降雨量的大小(單位:毫米)與其出售的快餐份數
成線性相關關系,該營銷部門統計了降雨量與出售的快餐份數的數據如下:
試建立關于
的回歸方程,為盡量滿足顧客要求又不在造成過多浪費,預測降雨量為6毫米時需要準備的快餐份數.(結果四舍五入保留整數)
附注:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0且滿足不等式22a+1>25a﹣2 .
(1)求實數a的取值范圍.
(2)求不等式loga(3x+1)<loga(7﹣5x).
(3)若函數y=loga(2x﹣1)在區間[1,3]有最小值為﹣2,求實數a值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,過橢圓
右焦點的直線
交橢圓
于
兩點,
為
的中點,且直線
的斜率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設另一直線與橢圓
交于
兩點,原點
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com