精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=x2﹣4x+2在區間[1,4]上的值域為(
A.[﹣1,2]
B.(﹣∞,﹣1)∪(2,+∞)
C.(﹣2,2)
D.[﹣2,2]

【答案】D
【解析】解:由題意:函數f(x)=x2﹣4x+2,
開口向上,對稱軸x=2,
∵1≤x≤4,
根據二次函數的圖象及性質:
可得:當x=2時,函數f(x)取得最小值為﹣2.
當x=4時,函數f(x)取得最大值為2.
∴函數f(x)=x2﹣4x+2在區間[1,4]上的值域為[﹣2,2].
故選D.
【考點精析】通過靈活運用函數的值域,掌握求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺,這個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】“p∧q是真命題”是“p∨q是真命題”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在[﹣2,1]上的某連續函數y=f(x)部分函數值如表:

x

﹣2

﹣1

0

1

f(x)

﹣1.5

﹣1

0.8

2

有同學僅根據表中數據作出了下列論斷:
①函數y=f(x)在[﹣2,1]上單調遞增; ②函數y=f(x)在[﹣2,1]上恰有一個零點;
③方程f(x)=0在[﹣2,﹣1]上必無實根.④方程f(x)﹣1=0必有實根.
其中正確的論斷個數是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若關于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4內有解,則實數a的取值范圍是(
A.a<﹣4
B.a>﹣4
C.a>﹣12
D.a<﹣12

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=ax2(a>0,a≠1)的圖象必經過點(
A.(0,1)
B.(1,1)
C.(2,0)
D.(2,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】命題“若x2+x﹣6>0,則x>2或x<﹣3”的否命題為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】命題“x∈R,x2﹣3ax+9<0”為真命題,求a的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知多項式函數f(x)=2x5﹣5x4﹣4x3+3x2﹣6x+7,當x=5時由秦九韶算法v0=2 v1=2×5﹣5=5 則v3=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校將5個參加知識競賽的名額全部分配給高一年級的4個班級,其中甲班級至少分配2個名額,其它班級可以不分配或分配多個名額,則不同的分配方案共有(
A.20種
B.24種
C.26種
D.30種

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视