精英家教網 > 高中數學 > 題目詳情

【題目】2020年新冠肺炎疫情暴發以來,中國政府迅速采取最全面、最嚴格、最徹底的防控舉措,堅決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻.為普及防治新冠肺炎的相關知識,某高中學校開展了線上新冠肺炎防控知識競答活動,現從大批參與者中隨機抽取200名幸運者,他們的得分(滿分100分)數據統計結果如圖:

1)若此次知識競答得分整體服從正態分布,用樣本來估計總體,設,分別為這200名幸運者得分的平均值和標準差(同一組數據用該區間中點值代替),求的值(,的值四舍五入取整數),并計算;

2)在(1)的條件下,為感謝大家積極參與這次活動,對參與此次知識競答的幸運者制定如下獎勵方案:得分低于的獲得1次抽獎機會,得分不低于的獲得2次抽獎機會.假定每次抽獎中,抽到18元紅包的概率為,抽到36元紅包的概率為.已知高三某同學是這次活動中的幸運者,記為該同學在抽獎中獲得紅包的總金額,求的分布列和數學期望,并估算舉辦此次活動所需要抽獎紅包的總金額.

參考數據:;

【答案】1,;;(2)分布列詳見解析,數學期望為36;總金額為7200元.

【解析】

1)計算,,故服從正態分布,計算得到答案.

2的取值為18,3654,72,計算概率得到分布列,再計算數學期望得到答案.

1

.即

,則,而,故,

服從正態分布,

2的取值為1836,5472

由題意知,

,

,,

所以的分布列為

18

36

54

72

,

估算所需要抽獎紅包的總金額為:(元).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,側棱垂直于底面,,的中點,平行于,平行于面,.

(1)求的長;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,已知四邊形是菱形,,,二面角的大小為的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的左頂點為,右焦點為,為橢圓上兩點,圓.

(1)若軸,且滿足直線與圓相切,求圓的方程;

(2)若圓的半徑為2,點,滿足,求直線被圓截得弦長的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點是曲線上的動點,點的延長線上,且,點的軌跡為

(1)求直線及曲線的極坐標方程;

(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年新冠肺炎疫情暴發以來,中國政府迅速采取最全面、最嚴格、最徹底的防控舉措,堅決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻.為普及防治新冠肺炎的相關知識,某高中學校開展了線上新冠肺炎防控知識競答活動,現從大批參與者中隨機抽取200名幸運者,他們的得分(滿分100分)數據統計結果如圖:

1)若此次知識競答得分整體服從正態分布,用樣本來估計總體,設,分別為這200名幸運者得分的平均值和標準差(同一組數據用該區間中點值代替),求,的值(,的值四舍五入取整數),并計算;

2)在(1)的條件下,為感謝大家積極參與這次活動,對參與此次知識競答的幸運者制定如下獎勵方案:得分低于的獲得1次抽獎機會,得分不低于的獲得2次抽獎機會.假定每次抽獎中,抽到18元紅包的概率為,抽到36元紅包的概率為.已知高三某同學是這次活動中的幸運者,記為該同學在抽獎中獲得紅包的總金額,求的分布列和數學期望,并估算舉辦此次活動所需要抽獎紅包的總金額.

參考數據:;;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于給定的數列,,設,即,,…,中的最大值,則稱數列是數列的“和諧數列”.

1)設,求的值,并證明數列是等差數列;

2)設數列,都是公比為q的正項等比數列,若數列是等差數列,求公比q的取值范圍;

3)設數列滿足,數列是數列,的“和諧數列”,且m為常數,,2,…,k),求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.其中,

1)若.求證:.

2)若不等式恒成立,試求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖.正四面體ABCD的頂點ABC分別在兩兩垂直的三條射線OX,OYOZ上,則在下列命題中,錯誤的為(  。

A.OABC是正三棱錐B.二面角DOBA的平面角為

C.直線AD與直線OB所成角為D.直線OD⊥平面ABC

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视