精英家教網 > 高中數學 > 題目詳情

【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有2個紅球,1個黃球和1個藍球(這些小球除顏色外大小形狀完全相同),從中隨機一次性取2個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:

①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機會;

②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機會;

③若取得的2個小球都是紅球,則該顧客中得一等獎,獎金是一個10元的紅包;

④若取得的2個小球都不是紅球,則該顧客中得二等獎,獎金是一個5元的紅包;

⑤若取得的2個小球只有1個紅球,則該顧客中得三等獎,獎金是一個2元的紅包.

抽獎活動的組織者記錄了該超市前20位顧客的購物消費數據(單位:元),繪制得到如圖所示的莖葉圖.

(1)求這20位顧客中獲得抽獎機會的人數與抽獎總次數(假定每位獲得抽獎機會的顧客都會去抽獎);

(2)求這20位顧客中獎得抽獎機會的顧客的購物消費數據的中位數與平均數(結果精確到整數部分);

(3)分別求在一次抽獎中獲得紅包獎金10元,5元,2元的概率.

【答案】(1)14(2)131(3)見解析

【解析】試題分析:(1)先計算這20位顧客中獲得抽獎機會的人數,再計算抽獎總次數,(2)根據平均數定義求平均數,從數據確定中位數,(3)先確定所有結果數,再根據古典概型概率公式確定對應概率.

試題解析:解:(1)這20位顧客中獲得抽獎機會的人數為5+3+2+1=11.

這20位顧客中,有8位顧客獲得一次抽獎的機會,有3位顧客獲得兩次抽獎的機會,故共有14次抽獎機會.

(2)獲得抽獎機會的數據的中位數為110,

平均數為 .

(3)記抽獎箱里的2個紅球為紅1,紅2,從箱中隨機取2個小球的所有結果為(紅1,紅2),(紅1,藍),(紅1,黃),(紅2,藍),(紅2,黃),(藍,黃),共有6個基本事件.

在一次抽獎中獲得紅包獎金10元的概率為

獲得5元的概率為,

獲得2元的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】動圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動圓M的圓心的軌跡方程為(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 .若曲線在點處的切線方程為為自然對數的底數).

(1)求函數的單調區間;

(2)若關于的不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

某工廠生產甲、乙兩種產品,已知生產每噸甲、乙兩種產品所需煤、電力、勞動力、獲得利潤及每天資源限額(最大供應量)如表所示:

產品
資源

甲產品
(每噸)

乙產品
(每噸)

資源限額
(每天)

煤(t

9

4

360

電力(kw·h

4

5

200

勞力(個)

3

10

300

利潤(萬元)

7

12


問:每天生產甲、乙兩種產品各多少噸,獲得利潤總額最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點的交點為,且拋物線在點處的切線與軸交于點,拋物線在點處的切線與軸交于點,與軸交于點.

(1)若直線與拋物線交于點 ,且,求拋物線的方程;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,側面⊥底面,底面為直角梯形,//,,,,的中點.

(Ⅰ)求證:PA//平面BEF;

(Ⅱ)若PCAB所成角為,求的長;

(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數的定義域為,若存在常數,使對一切實數均成立,則稱為“倍約束函數”現給出下列函數:;;;是定義在實數集上的奇函數,且對一切均有其中是“倍約束函數”的序號是  

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,圓的參數方程為為參數),直線經過點,且傾斜角為

(1)寫出直線的參數方程和圓的標準方程;

(2)設直線與圓相交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,若ADBC,則AB2BD·BC;類似地有命題:在三棱錐ABCD中,AD⊥平面ABC,若A點在平面BCD內的射影為M,則有SSBCM·SBCD.上述命題是 (  )

A. 真命題

B. 增加條件“ABAC”才是真命題

C. 增加條件“M為△BCD的垂心”才是真命題

D. 增加條件“三棱錐ABCD是正三棱錐”才是真命題

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视