【題目】高鐵、網購、移動支付和共享單車被譽為中國的“新四大發明”,彰顯出中國式創新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調查,得到如下數據:
每周移動支付次數 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,能否在犯錯誤概率不超過0.005的前提下,認為是否為“移動支付活躍用戶”與性別有關?
(Ⅱ)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶.
①求抽取的4名用戶中,既有男“移動支付達人”又有女“移動支付達人”的概率;
②為了鼓勵男性用戶使用移動支付,對抽出的男“移動支付達人”每人獎勵300元,記獎勵總金額為,求
的分布列及數學期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)在犯錯誤概率不超過0.005的前提下,能認為是否為“移動支付活躍用戶”與性別有關.(Ⅱ)①②見解析.
【解析】分析:(Ⅰ)由題意完成列聯表,結合列聯表計算可得.所以在犯錯誤概率不超過0.005的前提下,能認為是否為“移動支付活躍用戶”與性別有關.
(Ⅱ)視頻率為概率,在我市“移動支付達人”中,隨機抽取1名用戶,該用戶為男“移動支付達人”的概率為,女“移動支付達人”的概率為
.
①有對立事件公式可得滿足題意的概率值為.
②記抽出的男“移動支付達人”人數為,則
.由題意得
,由二項分布公式首先求得Y的分布列,然后利用均值和方差的性質可得X的分布列,計算可得
,得
的數學期望
元.
詳解:(Ⅰ)由表格數據可得列聯表如下:
非移動支付活躍用戶 | 移動支付活躍用戶 | 合計 | |
男 | 25 | 20 | 45 |
女 | 15 | 40 | 55 |
合計 | 40 | 60 | 100 |
將列聯表中的數據代入公式計算得:
.
所以在犯錯誤概率不超過0.005的前提下,能認為是否為“移動支付活躍用戶”與性別有關.
(Ⅱ)視頻率為概率,在我市“移動支付達人”中,隨機抽取1名用戶,
該用戶為男“移動支付達人”的概率為,女“移動支付達人”的概率為
.
①抽取的4名用戶中,既有男“移動支付達人”,又有女“移動支付達人”的概率為.
②記抽出的男“移動支付達人”人數為,則
.
由題意得,
;
;
;
;
.
所以的分布列為
0 | 1 | 2 | 3 | 4 | |
所以的分布列為
0 | 300 | 600 | 900 | 1200 | |
由,得
的數學期望
元.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,傾斜角為
的直線
的參數方程為
(
為參數).在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(1)求直線的普通方程與曲線
的直角坐標方程;
(2)若直線與曲線
交于
,
兩點,且
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體有8個不同頂點,現任意選擇其中4個不同頂點,然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫出所有正確結論的編號)
①每個面都是直角三角形的四面體;
②每個面都是等邊三角形的四面體;
③每個面都是全等的直角三角形的四面體;
④有三個面為等腰直角三角形,有一個面為等邊三角形的四面體.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4―4:坐標系與參數方程]
在直角坐標系xOy中,曲線C的參數方程為(θ為參數),直線l的參數方程為
.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年森林城市建設座談會在深圳舉行.會上宣讀了國家森林城市稱號批準決定,并舉行授牌儀式,滕州市榜上有名,被正式批準為“國家森林城市”.為進一步推進國家森林城市建設,我市準備制定生態環境改造投資方案,該方案要求同時具備下列兩個條件:
①每年用于風景區改造的費用隨每年改造生態環境總費用
增加而增加;②每年用于風景區改造的費用
不得低于每年改造生態環境總費用
的15%,但不得高于每年改造生態環境總費用
的25%.若每年改造生態環境的總費用至少1億元,至多4億元;請你分析能否采用函數模型
作為生態環境改造投資方案.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com