【題目】已知數列{an}中,a1=1,a1+2a2+3a3+…+nan=(n∈N*)
(Ⅰ)證明當n≥2時,數列{nan}是等比數列,并求數列{an}的通項an;
(Ⅱ)求數列{n2an}的前n項和Tn;
(Ⅲ)對任意n∈N*,使得 恒成立,求實數λ的最小值.
【答案】(Ⅰ)(Ⅱ)
(Ⅲ)
【解析】
(Ⅰ)要證明數列{nan}是等比數列,應先求其通項公式,然后用等比數列定義證明即可。由等比數列通向公式可求得數列{nan}的通項公式,進而可求數列{an}的通項an;(Ⅱ)要求數列{n2an}的前n項和Tn,應根據(Ⅰ)的結果求其通項公式,由通項公式的特點可用錯位相減法求數列從第二項到第n項的和,再加第一項可得結果;(Ⅲ) 根據(Ⅰ)的結果,不等式
可變為
,利用基本不等式,可求得不等式右邊的最大值為
?汕髮崝λ的最小值為
。
(Ⅰ)[證明]:由a1+2a2+3a3+…+nan=,得a1+2a2+3a3+…+(n﹣1)an﹣1=
(n≥2),
①﹣②:,即
(n≥2),∴當n≥2時,數列{nan}是等比數列,
又a1=1,a1+2a2+3a3+…+nan=,得a2=1,則2a2=2,∴
,
∴(n≥2),∴
;
(Ⅱ)解:由(Ⅰ)可知,
∴Tn=1+2×2×30+2×3×31+2×4×32+…+2n×3n﹣2,則,
兩式作差得:,得:
;
(Ⅲ)解:由≤(n+6)λ,得
≤(n+6)λ,
即對任意n∈N*恒成立.
當n=2或n=3時n+有最小值為5,
有最大值為
,故有λ≥
,∴實數λ的最小值為
.
科目:高中數學 來源: 題型:
【題目】已知f(x)為二次函數,且f(x+1)+f(x﹣1)=2x2﹣4x,
(1)求f(x)的解析式;
(2)設g(x)=f(2x)﹣m2x+1,其中x∈[0,1],m為常數且m∈R,求函數g(x)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現將甲、乙兩個學生在高二的6次數學測試的成績(百分制)制成如圖所示的莖葉圖,進人高三后,由于改進了學習方法,甲、乙這兩個學生的考試數學成績預計同時有了大的提升.若甲(乙)的高二任意一次考試成績為,則甲(乙)的高三對應的考試成績預計為
(若
>100.則取
為100).若已知甲、乙兩個學生的高二6次考試成績分別都是由低到高進步的,定義
為高三的任意一次考試后甲、乙兩個學生的當次成績之差的絕對值.
(I)試預測:在將要進行的高三6次測試中,甲、乙兩個學生的平均成績分別為多少?(計算結果四舍五入,取整數值)
(Ⅱ)求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題14分)下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數據的散點圖;并指出x,y 是否線性相關;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(3)已知該廠技術改造前100噸甲產品能耗為90噸標準煤,試根據(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技術改造前降低多少噸標準煤?
(參考:用最小二乘法求線性回歸方程系數公式,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結論正確的是________.
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′與平面A′BD所成的角為30°.
(4)四面體A′-BCD的體積為.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com