精英家教網 > 高中數學 > 題目詳情

【題目】某加油站擬建造如圖所示的鐵皮儲油罐(不計厚度,長度單位為米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設該儲油罐的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為千元.設該儲油罐的建造費用為千元.

(1) 寫出關于的函數表達式,并求該函數的定義域;

(2) 若預算為萬元,求所能建造的儲油罐中的最大值(精確到),并求此時儲油罐的體積(單位: 立方米,精確到立方米).

【答案】(1) ,;(2) (),立方米.

【解析】

(1)先利用公式計算兩個半球的表面積(不含底)以及圓柱的側面積,再根據每平方米建造費用可得關于的函數表達式,注意的范圍.

(2)根據預算可得關于的不等式,求出其解后可得的最大值,利用公式可求該幾何體的體積.

(1) 半球的表面積(不含底),圓柱的側面積.

于是.

定義域為.

(2) ,即,解得.

,

經計算得(立方米).

的最大值為(),此時儲油罐的體積約為立方米.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校為調查學生喜歡應用統計課程是否與性別有關,隨機抽取了選修課程的55名學生,得到數據如下表:

喜歡統計課程

不喜歡統計課程

男生

20

5

女生

10

20

1判斷是否有995%的把握認為喜歡應用統計課程與性別有關?

2用分層抽樣的方法從喜歡統計課程的學生中抽取6名學生作進一步調查,將這6名學生作為一個樣本,從中任選2人,求恰有1個男生和1個女生的概率

臨界值參考:

010

005

025

0010

0005

0001

2706

3841

5024

6635

7879

10828

參考公式:,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從四所高校中選2.

(Ⅰ)求甲、乙、丙三名同學都選高校的概率;

(Ⅱ)若已知甲同學特別喜歡高校,他必選校,另在三校中再隨機選1所;而同學乙和丙對四所高校沒有偏愛,因此他們每人在四所高校中隨機選2.

(。┣蠹淄瑢W選高校且乙、丙都未選高校的概率;

(ⅱ)記為甲、乙、丙三名同學中選校的人數,求隨機變量的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,已知圓與直線相切,點A為圓上一動點,軸于點N,且動點滿足,設動點M的軌跡為曲線C.

1)求曲線C的方程;

2)設P,Q是曲線C上兩動點,線段的中點為T,的斜率分別為,且,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C的短軸長為2,傾斜角為的直線l與橢圓C相交于A,B兩點,線段AB的中點為M,且點M與坐標原點O連線的斜率為.

1)求橢圓C的標準方程;

2)若,P是以AB為直徑的圓上的任意一點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求函數的單調遞減區間;

2)若關于的不等式恒成立,求整數的最小值;

3)若正實數滿足,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓過點

(Ⅰ)求橢圓的方程,并求其離心率;

(Ⅱ)過點軸的垂線,設點為第四象限內一點且在橢圓上(點不在直線上),直線關于的對稱直線與橢圓交于另一點.設為坐標原點,判斷直線與直線的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD為直角梯形,BCAD,∠BAD=90°,BC=2,AD=3,四邊形ABEF為平行四邊形,AB=1,BE=2,∠EBA=60°,平面ABEF⊥平面ABCD.

(1)求證:AE⊥平面ABCD;

(2)求平面ABEF與平面FCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某土特產超市為預估2020年元旦期間游客購買土特產的情況,對2019年元旦期間的90位游客購買情況進行統計,得到如下人數分布表.

購買金額(元)

人數

10

15

20

15

20

10

1)根據以上數據完成列聯表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.

不少于60

少于60

合計

40

18

合計

2)為吸引游客,該超市推出一種優惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產,請列出實際付款數(元)的分布列并求其數學期望.

附:參考公式和數據:,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视