精英家教網 > 高中數學 > 題目詳情

【題目】將函數的圖像向右平移個單位后得到函數,則具有性質(

A.最大值為1,圖像關于直線對稱

B.周期為,圖像關于點對稱

C.上單調遞增,為偶函數

D.上單調遞減,為奇函數

【答案】D

【解析】

由三角函數的圖象變換得到,得到函數為奇函數,進而利用三角函數的圖象與性質,即可得到答案.

將函數的圖象向右平移個單位后得到函數的圖象,顯然,g(x)為奇函數,故排除C.

,f(x)=0,不是最值,g(x)的圖象不關于直線x=對稱,故排除A.

(0, ),2x∈(0, ),y=sin2x為增函數,g(x)=sin2x為單調遞減,

g(x)為奇函數,故D滿足條件.

x=,g(x)= ,g(x)的圖象不關于點(,0)對稱,故排除B,

故選D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,若存在實數t,使得任給,不等式恒成立,則m的最大值為(

A.3B.6C.8D.9

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓)的左,右頂點分別為,,長軸長為,且經過點.

1)求橢圓的標準方程;

2)若為橢圓上異于的任意一點,證明:直線,的斜率的乘積為定值;

3)已知兩條互相垂直的直線都經過橢圓的右焦點,與橢圓交于,四點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于定義在區間D上的函數:若存在閉區間和常數e,使得對任意,都有,且對任意,當時,恒成立,則稱函數為區間D上的平底型函數.

1)判斷函數是否為R上的平底型函數?并說明理由;

2)若函數是區間上的平底型函數,求mn的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過拋物線的焦點的直線交拋物線于兩點,線段的中點為.

(1)求動點的軌跡的方程;

(2)經過坐標原點的直線與軌跡交于兩點,與拋物線交于點(),若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.

(1)分別求出兩人得分的平均數與方差;

(2)根據圖和上面算得的結果,對兩人的訓練成績作出評價.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l:

1證明直線l經過定點并求此點的坐標;

2若直線l不經過第四象限,求k的取值范圍;

3若直線lx軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設的面積為S,求S的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在平面直角坐標系中,,),其中數列都是遞增數列.

1)若,,判斷直線是否平行;

2)若數列都是正項等差數列,它們的公差分別為、,設四邊形的面積為),求證:也是等差數列;

3)若,),,記直線的斜率為,數列8項依次遞減,求滿足條件的數列的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,已知分別是的中點,若是平行四邊形,

(1)求證:平面

(2)平面,求證:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视