【題目】已知數列{an}的首項(a是常數),
(
).
(1)求,
,
,并判斷是否存在實數a使
成等差數列.若存在,求出
的通項公式;若不存在,說明理由;
(2)設,
(
),
為數列
的前n項和,求
科目:高中數學 來源: 題型:
【題目】一位同學家里訂了一份報紙,送報人每天都在早上6 : 207 : 40之間將報紙送達,該同學需要早上7 : 008 : 00之間出發上學,則這位同學在離開家之前能拿到報紙的概率為 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位將舉辦慶典活動,要在廣場上豎立一形狀為等腰梯形的彩門BADC (如圖),設計要求彩門的面積為S (單位:m2)高為h(單位:m)(S,h為常數),彩門的下底BC固定在廣場地面上,上底和兩腰由不銹鋼支架構成,設腰和下底的夾角為α,不銹鋼支架的長度和記為l.
(1)請將l表示成關于α的函數l=f(α);
(2)問當α為何值時l最。坎⑶笞钚≈担
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,G是PB的中點.
(1)根據三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知、
為橢圓
:
(
)的左、右焦點,點
為橢圓上一點,且
.
(1)求橢圓的標準方程;
(2)若圓是以
為直徑的圓,直線
:
與圓
相切,并與橢圓
交于不同的兩點
、
,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,G是PB的中點.
(1)根據三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩圓,
的圓心分別為c1,c2,,P為一個動點,且
.
(1)求動點P的軌跡方程;
(2)是否存在過點A(2,0)的直線l與軌跡M交于不同的兩點C,D,使得C1C=C1D?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com