精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,

)求函數的最小值.

)是否存在一次函數,使得對于,總有,且成立?若存在,求出的表達式;若不存在,說明理由.

【答案】.(

【解析】試題分析(1)表示出,用導數判斷其單調性,根據單調性即可求出最小值;
(2)由()知,從而得,于是h(x)可表示為關于k的一次函數,根據f(x)≥h(x)恒成立可求得k值,從而可求得h(x)表達式,再驗證h(x))≥g(x)對一切x>0恒成立即可;

試題解析: 的定義域為, ,

,

易知時, , 時, ,

上單調遞減,在上單調遞增,

時, 取得最小值為

)由()知, ,

所以,

故可證,代入,

恒成立,

, ,

,則,

時, ,當時, ,

上單調遞減,在上單調遞增,

,

對一切恒成立,

綜上,存在一次函數,使得對于,總有,

,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

設函數f(x)=e2xaln x.

(1)討論f(x)的導函數f′(x)零點的個數;

(2)證明:當a>0時,f(x)≥2aaln.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數

(1)解不等式;

(2)若關于的方程的解集為空集,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,四棱錐的側面底面,底面是直角梯形,且, , 中點.

(1)求證: 平面;

(2)若,求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列, , 滿足,且當時, ,令

)寫出的所有可能的值.

)求的最大值.

)是否存在數列,使得?若存在,求出數列;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸,建立極坐標系,點的極坐標為,直線的極坐標方程為,且過點,曲線的參考方程為為參數).

(1)求曲線上的點到直線的距離的最大值與最小值;

(2)過點與直線平行的直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處的切線斜率為2.

(Ⅰ)求的單調區間和極值;

(Ⅱ)若上無解,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸非負半軸為極軸建立坐標系,已知曲線的極坐標方程為,直線的參數方程為: 為參數),兩曲線相交于兩點.

1)寫出曲線的直角坐標方程和直線的普通方程;

2)若的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形均為菱形, ,且.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视