精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

1)當時,求曲線在點處的切線方程;

2)若,都有成立,求的取值范圍;

3)當時,設,求在區間上的最大值.

【答案】1;(2;(3.

【解析】

1)代入,計算,并計算,然后利用點斜式可得切線方程.

2)采用分離參數可得,然后構造函數,通過導數計算即可.

3)表示,然后計算,分類討論,,函數的單調性,并計算最大值即可.

1)當時,,

所以.

所以,切點坐標為,,

所以所求的切線方程為,即.

2)函數的定義域為

,則.

,.

,得.

變化時,,的變化如下表:

0

極小值

所以的最小值為.所以.

3)∵,∴,.

,則.

,即時,在,為減函數.

所以的最大值為.

,即時,

變化時,,的變化如下表:

0

極大值

所以的最大值為.

,即時,在,為增函數.

所以的最大值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】[選修4―4:坐標系與參數方程]

在直角坐標系xOy中,曲線C的參數方程為θ為參數),直線l的參數方程為.

(1)若a=1,求Cl的交點坐標;

(2)若C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的長軸長為,且離心率為.

1)求橢圓的標準方程;

2)設橢圓的左焦點為,點是橢圓與軸負半軸的交點,經過的直線與橢圓交于點,經過且與平行的直線與橢圓交于點,若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著經濟模式的改變,微商和電商已成為當今城鄉一種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品.現以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤.

1)將表示為的函數,求出該函數表達式;

2)根據直方圖估計利潤不少于57萬元的概率;

3)根據頻率分布直方圖,估計一個銷售季度內市場需求量的平均數與中位數的大。ūA舻叫迭c后一位).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),將曲線上各點的橫坐標都縮短為原來的倍,縱坐標坐標都伸長為原來的倍,得到曲線,在極坐標系(與直角坐標系取相同的單位長度,且以原點為極點,以軸非負半軸為極軸)中,直線的極坐標方程為

(1)求直線和曲線的直角坐標方程;

(2)設點是曲線上的一個動點,求它到直線的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標中,圓,圓。

()在以O為極點,x軸正半軸為極軸的極坐標系中,分別寫出圓的極坐標方程,并求出圓的交點坐標(用極坐標表示);

()求圓的公共弦的參數方程。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖像是由函數的圖像經如下變換得到:先將圖像上所有點的縱坐標伸長到原來的2倍橫坐標不變,再將所得到的圖像向右平移個單位長度.

求函數的解析式,并求其圖像的對稱軸方程;

已知關于的方程內有兩個不同的解

1求實數m的取值范圍;

2證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙二人進行一次象棋比賽,每局勝者得1分,負者得0分(無平局),約定一方得4分時就獲得本次比賽的勝利并且比賽結束,設在每局比賽中,甲獲勝的概率為,乙獲勝的概率為,各局比賽結果相互獨立,已知前3局中,甲得1分,乙得2.

1)求甲獲得這次比賽勝利的概率;

2)設表示從第4局開始到比賽結束所進行的局數,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列關于命題的說法錯誤的是(

A.命題,則的逆否命題為,則

B.函數在區間上為增函數的充分不必要條件

C.的極值點,則的逆命題為真

D.命題,的否定是,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视