【題目】高斯是德國著名的數學家,近代數學奠基者之一,享有“數學王子”的稱號,用其名字命名的“高斯函數”為:設,用
表示不超過
的最大整數,則
稱為高斯函數,例如:
,
.已知函數
,函數
,則下列命題中真命題的個數是( )
①圖象關于
對稱;
②是奇函數;
③在
上是增函數;
④的值域是
.
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】如圖,斜率為的直線交拋物線
于
兩點,已知點
的橫坐標比點
的橫坐標大4,直線
交線段
于點
,交拋物線于點
.
(1)若點的橫坐標等于0,求
的值;
(2)求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系,圓
的極坐標方程為
.
(1)求圓的圓心到直線
的距離;
(2)已知,若直線
與圓
交于
兩點,
為
的中點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓的左、右頂點分別為A、B,右焦點為F,且點F滿足
,由橢圓C的四個頂點圍成的四邊形面積為
.過點
的直線TA,TB與此橢圓分別交于點
,
,其中
,
,
.
(1)求橢圓C的標準方程;
(2)當T在直線時,直線MN是否過x軸上的一定點?若是,求出該定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年末,武漢出現新型冠狀病毒(肺炎疫情,并快速席卷我國其他地區,傳播速度很快.因這種病毒是以前從未在人體中發現的冠狀病毒新毒株,目前沒有特異治療方法.防控難度很大.武漢市出現疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發熱患者和確診患者的密切接觸者等“四類”人員,強化網格化管理,不落一戶、不漏一人.在排查期間,某社區將本社區的排查工作人員分為
,
兩個小組,排查工作期間社區隨機抽取了100戶已排查戶,進行了對排查工作態度是否滿意的電話調查,根據調查結果統計后,得到如下
的列聯表.
是否滿意 組別 | 不滿意 | 滿意 | 合計 |
| 16 | 34 | 50 |
| 2 | 45 | 50 |
合計 | 21 | 79 | 100 |
(1)分別估計社區居民對組、
組兩個排查組的工作態度滿意的概率;
(2)根據列聯表的數據,能否有的把握認為“對社區排查工作態度滿意”與“排查工作組別”有關?
附表:
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點作圓
的切線
,已知
,
分別為切點,直線
恰好經過橢圓的右焦點和下頂點,則直線
方程為___________;橢圓的標準方程是__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com