精英家教網 > 高中數學 > 題目詳情

(2013•重慶)設f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數f(x)的單調區間與極值.

(1)   (2)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數函數處取得極值1.
(1)求實數b,c的值;
(2)求在區間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)若的極大值為,求實數的值;
(2)若對任意,都有恒成立,求實數的取值范圍;
(3)若函數f(x)滿足:在定義域內存在實數x0,使f(x0+k)= f(x0)+ f(k)(k為常數),則稱“f(x)關于k可線性分解”. 設,若關于實數a 可線性分解,求取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,證明:當時,;
(2)當時,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中為自然對數的底數.
(1)求函數的單調區間;
(2)記曲線在點(其中)處的切線為,軸、軸所圍成的三角形面積為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若函數上是減函數,求實數的取值范圍;
(2)是否存在實數,當是自然常數)時,函數的最小值是3,若存在,求出的值;若不存在,說明理由;
(3)當時,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若曲線在點處與直線相切,求a,b的值;
(2)求函數的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)試求函數的遞減區間;
(2)試求函數在區間上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=ln x-ax,g(x)=ex-ax,其中a為實數.若f(x)在(1,+∞)上是單調減函數,且g(x)在(1,+∞)上有最小值,求a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视