【題目】第屆世界杯足球賽在俄羅斯進行,某校足球協會為了解該校學生對此次足球盛會的關注情況,隨機調查了該校
名學生,并將這
名學生分為對世界杯足球賽“非常關注”與“一般關注”兩類,已知這
名學生中男生比女生多
人,對世界杯足球賽“非常關注”的學生中男生人數與女生人數之比為
,對世界杯足球賽“一般關注”的學生中男生比女生少
人.
(1)根據題意建立列聯表,判斷是否有
的把握認為男生與女生對世界杯足球賽的關注有差異?
(2)該校足球協會從對世界杯足球賽“非常關注”的學生中根據性別進行分層抽樣,從中抽取人,再從這
人中隨機選出
人參與世界杯足球賽宣傳活動,求這
人中至少有一個男生的概率.
附:,
.
科目:高中數學 來源: 題型:
【題目】(I)已知函數f(x)=rx﹣xr+(1﹣r)(x>0),其中r為有理數,且0<r<1.
(1)求f(x)的最小值;
(2)試用(1)的結果證明如下命題:設a1≥0,a2≥0,b1 , b2為正有理數,若b1+b2=1,則a1b1a2b2≤a1b1+a2b2;
(3)請將(2)中的命題推廣到一般形式,并用數學歸納法證明你所推廣的命題.注:當α為正有理數時,有求導公式(xα)r=αxα﹣1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面命題中,正確的命題有( )
①若n1,n2分別是不同平面α,β的法向量,則n1∥n2α∥β;
②若n1,n2分別是平面α,β的法向量,則α⊥βn1·n2=0;
③若n是平面α的法向量,b,c是α內兩個不共線的向量,a=λb+μc(λ,μ∈R),則n·a=0;
④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①若函數在區間
上單調遞增,則
;
②若 (
且
),則
的取值范圍是
;
③若函數,則對任意的
,都有
;
④若 (
且
),在區間
上單調遞減,則
.
其中所有正確命題的序號是______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,E,F分別是AB,PD的中點,若PA=AD=3,CD=
①求證:AF∥平面PCE
②求證:平面PCE⊥平面PCD
③求直線FC與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)請在所給的平面直角坐標系中畫出函數的圖象;
(2)根據函數的圖象回答下列問題:①求函數
的單調區間;
②求函數的值域;③求關于
的方程
在區間
上解的個數.(回答上述3個小題都只需直接寫出結果,不需給出演算步驟)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數,且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com